

easyLadder
The PLC engine for your Raspberry Pi

User manual

2

Contents

1. Introduction ... 4

2. Requirements .. 5

3. PLC engine .. 6

3.1. Introduction to ladder programming .. 6

3.2. PLC devices ... 8

3.2.1. Introduction .. 8

3.2.2. Bit access to Word devices ... 8

3.2.3. Word access to Bit devices ... 9

3.2.4. Indexed access to devices ... 9

3.2.5. Specifying constants .. 9

3.2.6. easyLadder memory areas .. 10

3.2.7. Input / output device areas .. 11

3.2.8. Work device areas ... 11

3.2.9. Counter devices ... 12

3.2.10. Timer devices... 13

3.2.11. Special devices .. 15

3.2.12. Pointer devices .. 16

3.3. PLC instructions ... 17

3.3.1. Introduction .. 17

3.3.2. Instruction modifiers .. 18

3.3.3. 16 bit mode .. 19

3.3.4. Instruction summary... 20

3.3.5. Contact instructions ... 23

3.3.6. Bit management instructions ... 26

3.3.7. Comparison instructions ... 28

3.3.8. Data movement instructions .. 29

3.3.9. Arithmetic instructions .. 31

3.3.10. Data logic instructions ... 34

3.3.11. Special timer instructions ... 36

3.3.12. Data conversion instructions ... 37

3.3.13. Floating-point math instructions .. 38

3.3.14. Program flow instructions .. 42

3.3.15. Serial port instructions .. 45

3.3.16. MODBUS TCP/IP instructions (from v1.4) ... 47

3.3.17. Other instructions ... 55

3

3.4. Serial port programming.. 61

3.5. MODBUS TCP/IP functions ... 64

3.5.1. MODBUS TCP/IP server .. 64

3.5.2. MODBUS TCP/IP client instructions .. 66

3.6. RasPICER, GPIO and I2C expanders I/O allocation... 71

3.7. Extension I/O units .. 72

3.8. PLC errors .. 73

4. Raspberry Pi software .. 74

4.1. Installing easyLadder.. 74

4.2. The easyLadder engine .. 75

4.3. The raspicer utility .. 76

4.4. Optimizing the PLC engine. ... 79

5. easyLadder studio programming software .. 80

5.1. Introduction .. 80

5.2. Installing easyLadder studio ... 80

5.3. easyLadder studio overview ... 81

5.4. Writing your program ... 82

5.5. Device comments .. 83

5.6. Online operation .. 84

5.7. Offline program transfer to the PLC ... 85

5.8. PLC configuration .. 86

5.8.1. PLC parameters .. 86

5.8.2. Ethernet unit definitions ... 87

5.8.3. GPIO definitions .. 88

5.8.4. I2C I/O expanders ... 89

5.8.5. TCP/IP security ... 90

6. HMI and easyLadder PLC ... 91

7. Programming library .. 92

4

1. INTRODUCTION

The Raspberry Pi is a powerful Linux computer that has gained wide acceptance among

technicians and hobbyists, especially in automation projects.

In this field of automation, PLCs (Programmable Logic Controllers) are extensively used

because program implementation is done quickly and easily. Ladder programming is perfectly

suited to control automated processes. For more complex calculations, some PLC

manufacturers incorporate script languages as a complement to the ladder engine.

easyLadder is a complete PLC engine for the Raspberry Pi. It was designed to work together

with the RasPICER board to provide the necessary inputs and outputs. Nevertheless, the

RasPICER board is not required (but highly recommended), since you can use the Raspberry

GPIO ports and external I2C I/O expanders to supply inputs and outputs to the system. In

addition, the system can be expanded with up to 32 additional Ethernet I/O modules.

The RasPICER board includes:

Á 8 digital inputs (12-24 VDC)

Á 4 relay outputs

Á 4 NPN transistor outputs

Á 2 analog inputs (0-20 mA)

Á 2 analog outputs (0-20 mA)

Á 1 RS485 serial port

Á 1 RS232 serial port

Á Power manager (12-24 VDC)

Á Rechargeable backup battery (3000 mAh)

Á Real time clock

Á Watchdog functions

Using the RasPICER, the entire system is powered supplying a voltage from 12 VDC to 24 VDC

to the terminals VDC and GND, or by means of the backup battery.

For more information about the RasPICER board, visit http://www.ferrariehijos.com/RasPICER.

easyLadder features include:

Á Retentive devices

Á Timers and retentive timers (100ms and 10ms)

Á Math instructions (floating point support)

Á MODBUS TCP/IP server and client functions.

Á Advanced instructions, such as PID control

Á Serial port support

Á Online edition (program edition without stopping control)

Á Free graphical ladder editor easyLadder studio for Microsoft Windows. This software allows

programming and monitoring the PLC engine through the network connection.

Á Software library for interfacing your custom program (C or Python) with the PLC engine

For support contact info@ferrariehijos.com or http://www.ferrariehijos.com/easyLadder.

http://www.ferrariehijos.com/RasPICER
mailto:info@ferrariehijos.com
http://www.ferrariehijos.com/easyLadder

5

2. REQUIREMENTS

easyLadder is compatible with the following Raspberry Pi versions:

Á Raspberry Pi 1 A+

Á Raspberry Pi 1 B+

Á Raspberry Pi zero

Á Raspberry Pi 2 B (recommended)

Á Raspberry Pi 3 B (recommended)

A working Ethernet/Wifi connection is required for online monitoring and programming with

the easyLadder studio for Microsoft Windows. You can also export your PLC program to files and

transfer them to the Raspberry file system using your preferred method.

All software is compiled for the RASPBIAN JESSIE Linux distribution. Other distributions may be

supported on request. Please contact us for other Linux kinds.

6

3. PLC ENGINE

3.1. Introduction to ladder programming

easyLadder is a simple but powerful software PLC engine. This guide explains some concepts

of ladder programming, but it is not intended as a book for learning ladder. Some kind of ladder

knowledge is highly recommended before reading.

PLC machines are computers that continuously executes a ladder program. Each execution of

the program is called scan. When the scan is complete the PLC will execute background actions

like input/output refreshing and serial communication processing. When finished, the PLC will

execute another program scan, repeating the cycle until the PLC is placed in STOP mode. Time

elapsed between two scan cycles is called scan time.

The ladder program is a set of mnemonic instructions that can be easily translated to a graphic

form (relay logic diagrams). These instructions are executed until a FEND or END instruction is

found, meaning the end of the scan. After the FEND instruction you can place subroutines that

can be called within the program. At the end of the code, an END instruction is required.

The PLC contains several memory allocations for storing data. These memory allocations are

called devices. easyLadder includes two kind of devices according to the size of the contained

value: Bit devices and Word devices. Bit devices can store boolean values (0-OFF or 1-ON). Word

devices are 16 bit variables (signed or unsigned).

Instructions are generally divided into two groups: contact instructions and coil instructions.

Coil instructions are executed using a condition context. This execution condition can be

considered a boolean variable. Contact instructions are used to modify the condition variable

for the incoming coil instructions, and are principally boolean operations (OR, AND, NOT…)

against the previous condition. Coil instructions do not modify the condition, but executes

according to the status of the current condition.

7

The following image represents a basic ladder program. At the left you can view the logic

diagram, at the right the corresponding program using instruction list.

In this program, LD X0 and LD X1 are contact instructions and OUT Y0, INC D0 and END are coil

instructions. Coil instructions are always shown aligned to the right in a ladder diagram. X0, X1

and Y0 are bit devices, D0 is a word device. The lines can be seen as signal wires spreading the

condition signal.

The line shown at the left of the ladder diagram is called root line or root condition, and

corresponds to an always ON signal.

In order to clarify the meaning of the instructions, LD X0 will load the value of the device X0 to

the condition context, OR X1 will execute a boolean OR between the condition context and the

value X1. OUT Y0 will transfer the value of the condition to device Y0. INC D0 will increment

the value of device D0 only when the condition value is ON. END represents the end of the

program.

The above program will set Y0 to ON and will increment D0 when X0 OR X1 is ON. When X0 and

X1 are OFF, Y0 will be reset to OFF and D0 will maintain the value.

As you can note, coil instruction behavior concerning the condition value varies between

instructions.

For example, the OUT Y0 will always refresh the value Y0. If the instruction condition is OFF, Y0

will be reset to OFF. In the same way, when the instruction condition is ON, Y0 will be set to ON.

On the other hand, instruction INC D0 will only increment the value of D0 if the instruction

condition is ON. When OFF, the value of D0 will be not changed. The END instruction does not

use any instruction condition.

Another very important point to note is regarding the INC D0 instruction. When X0 or X1 is TRUE,

the value of D0 will increment in EVERY SCAN because, as previously noted, the PLC will execute

the program cycle continuously while in RUN mode. For example, if the scan time is 1 ms, the

value of D0 will increment every 1 ms when the execution condition is TRUE.

Although ladder diagrams look alike electrical schematics, you must consider that PLC programs

are running step by step, in order, using instructions. For example, when setting a physical

output value, you can reset and set the device value several times during a cycle scan, but this

device value will be transferred to the physical output only at the end of the scan.

X0

X1

Y0

INC D0

END

LD X0

OR X1

OUT Y0

INC D0

END

INSTRUCTION LIST

8

3.2. PLC devices

3.2.1. Introduction

PLC contains several memory allocations for storing data. These memory allocations are called

devices.

easyLadder includes two kind of devices according to the size of the contained value: Bit

devices and Word devices.

Á Bit devices can store only boolean values (0 or 1).

Á Word devices are 16 bit variables. These devices can store a number between -32,768 and

32,767 when signed, or between 0 and 65,535 when unsigned.

Several instructions can use two consecutive Word devices to form a bigger composite device:

Á Dword devices are 32 bit variables. Can store a number between -2,147,483,648 and

2,147,483,647 when signed, or between 0 and 4,294,967,295 when unsigned.

Á Float devices are 32 bit variables in floating point format, for storing real numbers.

All memory is organized in little-endian format, so when storing a Dword value 0x12345678 in

device D0 (and D1), device D0 will store 0x5678 and device D1 will store 0x1234.

According to their volatility, easyLadder devices can be divided into:

Á Retentive devices. These devices retain their value after a system shutdown or when PLC is

placed in STOP mode.

Á Volatile devices. Volatile devices are reset to 0 after a system shutdown or when PLC is

switched to STOP mode.

3.2.2. Bit access to Word devices

easyLadder allows bit access to Word devices in every instruction. The reference is made

adding a dot (.) after the Word device name and the bit number to reference (0-15).

For example D1.2 references bit 2 of device D1, D293.15 references bit 15 of device D293.

9

3.2.3. Word access to Bit devices

easyLadder allows word access to Bit devices in every instruction. The reference is made by

specifying a prefix Kn followed by the Bit device name, where n is 1, 2, 4 or 8:

Á K1 prefix specifies the word device containing only bits 0 to 3 (nibble) from the Bit device

referenced and consecutives.

Á K2 prefix specifies the word device containing only bits 0 to 7 (byte) from the Bit device

referenced and consecutives.

Á K4 prefix specifies the word device containing bits 0 to 15 (word) from the Bit device

referenced and consecutives.

Á K8 prefix specifies the dword device containing bits 0 to 31 (dword) from the Bit device

referenced and consecutives.

For example, consider these device values: X0 (value 1), X1 (value 0), X2 (value 1), X3 (value 1),

X4 (value 1). K1X0 will contain value 0b1101 (13 decimal), K1X1 will contain value 0b1110 (14

decimal).

3.2.4. Indexed access to devices

easyLadder allows indexed access to devices (Word devices or Bit devices) in every instruction.

The reference is made by specifying the index between brackets [].

For example consider a value 10 in D0, D100[D0] will point to D110.

3.2.5. Specifying constants

When you need to use a constant value in any instruction, follow these tips:

Á Decimal constants are specified with the K prefix. For example K200 references decimal

200 and K-1 references decimal -1.

Á Hexadecimal constants are specified with the # prefix. For example #1A references

hexadecimal 0x1A (decimal 26).

Á Floating constants are specified without prefix. Use the dot (.) as decimal point.

10

3.2.6. easyLadder memory areas

easyLadder devices are divided in memory areas. For device designation, use the memory area

name followed with the desired device number in decimal format (X10, D120…). The following

table contains available memory areas accessible to the user:

Bit devices

Memory area Type Devices Usage

X - 512 Digital inputs

Y Volatile 512 Digital outputs

W Volatile 10000 Work bits

H Retentive 10000 Retentive work bits

T (TC) Volatile 256 Timer contact (100 ms precision)

TH (THC) Volatile 256 Timer contact (10 ms precision)

C (CC) Volatile 256 Counter contact

S - 256 Special bit devices

Word devices

Memory area Type Devices Usage

AX - 256 Analog inputs

AY Volatile 256 Analog outputs

D Retentive 10000 User data devices

T (TD) Retentive 256 Timer count value (100 ms precision)

TH (THD) Retentive 256 Timer count value (10 ms precision)

C (CD) Retentive 256 Counter value

SD - 32 Special word devices

Pointer devices

Memory area Type Devices Usage

P - 256 Program pointers

11

3.2.7. Input / output device areas

These areas contains values for digital and analog inputs and outputs. Input areas are refreshed

before any program scan. Output areas are transferred to physical output after the program

scan.

X memory area (bit devices X0 – X511) contains status for the digital inputs. X0 to X7 are

reserved for RasPICER digital inputs. Other inputs can be mapped to external Ethernet modules,

Raspberry Pi GPIO ports or external I2C port expanders. Any unmapped input can be used as a

work bit.

Y memory area (bit devices Y0 – Y511) contains status for the digital outputs. Y0 to Y7 are

reserved for RasPICER digital outputs. Other outputs can be mapped to external Ethernet

modules, Raspberry Pi GPIO ports or external I2C port expanders. Any unmapped output can be

used as a work bit.

AX memory area (word devices AX0 – AX255) contains status for the analog inputs. AX0 to AX1

are reserved for RasPICER analog inputs. Other inputs can be mapped to external Ethernet

modules. Any unmapped input can be used as a work word.

AY memory area (word devices Y0 – Y255) contains status for the analog outputs. AY0 to AY1

are reserved for RasPICER analog outputs. Other outputs can be mapped to external Ethernet

modules. Any unmapped output can be used as a work word.

3.2.8. Work device areas

These areas are available to store user data and other work devices.

W memory area (bit devices W0 – W9999) is volatile. These devices will be reset to 0 when PLC

switches to STOP mode or during engine startup.

H memory area (bit devices H0 – H9999) is retentive. Devices will retain value in when PLC

switches to STOP mode or during engine startup.

D memory area (word devices D0 – D9999) is retentive. Devices will retain value in when PLC

switches to STOP mode or during engine startup.

12

3.2.9. Counter devices

Counter management is done through C devices. Counters, as the name suggests, are used to

count events. Counters are driven by the OUT instruction. When there is a rising edge in the

instruction condition, the counter increments its value up to the setpoint specified in the OUT

instruction (second parameter). Once the setpoint is reached, the correspondent counter

contact turns ON. The counter value is retained on PLC STOP or shutdown.

The above example will count 10 pulses in X0 input. When the count is reached, the counter is

reset to start again.

Each counter Cn has two associated devices CCn and CDn. CCn is a bit device that contains the

contact state for the counter (count reached). CDn is a word device containing the current count

value for the counter. CDn value starts counting from 0 to the counter setpoint. You do not need

to access these CCn and CDn devices directly. You can use always the Cn device and the PLC

will select the correct device based on the instruction executed (bit or word).

Counter status (counter contact) is refreshed during OUT instruction execution.

X0

C0

C0 K10

RST C0

LD X0

OUT C0 K10

LD C0

RST C0

INSTRUCTION LIST

13

3.2.10. Timer devices

easyLadder contains several devices reserved for timer operation. There are available two

timer precisions (100 ms and 10 ms). T devices (T0 – T255) use 100 ms unit for the timer, TH

devices (TH0-TH255) use 10 ms unit. Both memory areas are independent, so it is possible to

use T1 and TH1 simultaneously.

Normal (not retentive) timers are driven with the OUT instruction or TIM instruction. Both

instructions are fully equivalent. These timers starts counting time when the instruction

executes with an ON condition status, up to the setpoint specified in the instruction (second

parameter). When the setpoint is reached, the corresponding timer contact turns ON.

When the instruction executes with an OFF condition, the timer is reset. You can also manually

reset the timer by issuing a RST Tn instruction.

This example will maintain the W0 ON state for a time of 2 secs (20 * 100 ms). After this time,

WO will be set to OFF.

Retentive timers are driven with a RTIM instruction. Retentive timers count the time when the

instruction executes with an ON condition status, up to the setpoint specified in the instruction.

When the setpoint is reached, the corresponding timer contact turns ON.

When the instruction executes with an OFF condition, the timer is not reset, but only stops

counting. You need to manually reset the timer by issuing a RST Tn instruction. The timer value

is retained on PLC STOP or shutdown.

Each timer Tn (and THn) has two associated devices TCn and TDn (THCn and THDn). TCn is a bit

device that contains the contact state for the timer (timer elapsed). TDn is a word device

containing the current count value for the timer. TDn value starts counting from 0 to the timer

setpoint, so this device contain the elapsed time (in timer units) from the start of the timed

event. You do not need to access these TCn and TDn devices directly. You can use always the

Tn device and the PLC will select the correct device based on the instruction executed (bit or

word).

Timer status is refreshed during OUT, TIM or RTIM instruction execution. It is not required to

execute the timer coil in every scan, but it must be executed at least every second when the

timer is ON, in order to obtain correct timings. For this reason, care must be taken when using

timers in subroutines or using JMP instructions.

W0

T0

T0 K20

RST W0

LD W0

OUT T0 K20

LD T0

RST W0

INSTRUCTION LIST

14

Consider the example shown at the begin of this section. When trying to convert this program

using subroutines we get the following two programs:

The program at the left initially seems to be correct. When W0 is ON, the P0 subroutine will be

continuously called. This subroutine will count W0 ON time and, after 2 seconds, the value of

W0 will be reset to OFF, and the subroutine will not be called anymore. What happens when we

set W0 to ON again? The subroutine will be called again, but the timer T0 coil was not executed

in the OFF state, so the timer was NOT reset. So, the W0 will be set to OFF immediately. The

program shown at the right solves this running the subroutine again on W0 falling edge, so the

timer will be reset when W0 switches from ON to OFF state. You can also correct the left

program resetting the timer manually using RST T0 instruction when T0 contact sets ON.

Please consider this tip when using timers in subroutines.

For more information about timers, refer to the TIM and RTIM instructions.

WRONG PROGRAM

W0

P0

CALL P0

FEND

W0

T0 K20

T0

RST W0

RET

END

CORRECT PROGRAM

W0

P0

CALL P0

FEND

W0

T0 K20

T0

RST W0

RET

END

W0

15

3.2.11. Special devices

easyLadder provides two memory areas (S and SD) for storing status and system variables. S

memory area contains special bit devices and SD contains special word devices.

S devices:

Device Name Description

S0 OFF Always OFF bit

S1 ON Always ON bit

S2 1st ON Bit ON for the first scan cycle. Other cycles OFF.

S3 1st OFF Bit OFF for the first scan cycle. Other cycles ON.

S4 10 ms 10 millisecond clock oscillator

S6 100 ms 100 millisecond clock oscillator

S5 1 s 1 second clock oscillator

S7 1 min 1 minute clock oscillator

S10 EQUAL EQUAL flag for CMP instructions

S11 GREAT GREAT flag for CMP instructions

S12 LESS LESS flag for CMP instructions

S13 DIV ZERO Division by zero in DIV instruction

S16 POWER Power present in VDC terminals (RasPICER board only)

S17 EOC End of battery charge (RasPICER board only)

S18 CHARGE Battery charging (RasPICER board only)

S19 BTN PRESS Power button pressed (RasPICER board only). Reset manually

S20 DBLBTN PRESS Power button double pressed (RasPICER only). Reset manually

S24 16BIT MODE 16 bit mode for selected instructions. See section 3.3.3.

S25 RX1 READY RS485 data ready for receive with RXD instruction (RasPICER only)

S26 RX2 READY RS232 data ready for receive with RXD instruction (RasPICER only)

S27 RX3 READY ttyAMA0 data ready for receive with RXD instruction

S28 TX1 READY RS485 write buffer ready for TXD instruction (RasPICER only)

S29 TX2 READY RS232 write buffer ready for TXD instruction (RasPICER only)

S30 TX3 READY ttyAMA0 write buffer ready for TXD instruction

16

SD devices:

Device Name Description

SD0 SCAN TIME Current scan time in 0,1 millisecond units

SD1 MIN SCAN TIME Minimum scan time in 0,1 millisecond units

SD2 MAX SCAN TIME Maximum scan time in 0,1 millisecond units

SD10 RTC YEAR System clock current year (full year format)

SD11 RTC MONTH System clock current month (1-12)

SD12 RTC DAY System clock current day (1-31)

SD13 RTC HOUR System clock current hour (0-23)

SD14 RTC MIN System clock current minute (0-59)

SD15 RTC SEC System clock current second (0-59)

SD16 PORT1 CFG Configuration word for RS485 port (RasPICER board only)

SD17 PORT2 CFG Configuration word for RS232 port (RasPICER board only)

SD18 PORT3 CFG Configuration word for ttyAMA0 port

SD20 EXTERR0 Extension module error bitmask (modules 1-16)

SD21 EXTERR1 Extension module error bitmask (modules 17-32)

SD22 I2CERR0 I2C expander error bitmask (modules 1-16)

SD23 I2CERR1 I2C expander error bitmask (modules 17-32)

SD25 RX1 BYTES RS485 num. bytes ready for RXD instruction (RasPICER board only)

SD26 RX2 BYTES RS232 num. bytes ready for RXD instruction (RasPICER board only)

SD27 RX3 BYTES ttyAMA0 num. bytes ready for RXD instruction

SD28 RX1 READ RS485 num. bytes read in last RXD instruction (RasPICER only)

SD29 RX2 READ RS232 num. bytes read in last RXD instruction (RasPICER only)

SD30 RX3 READ ttyAMA0 num. bytes read in last RXD instruction

3.2.12. Pointer devices

easyLadder provides a special memory area (P) for storing up to 256 (P0 to P255) pointers to

the program memory. These devices are not accessible to the user.

A pointer is basically a label that designates a program location. When the PLC engine reaches

a pointer during execution, it simply bypasses the pointer without taking any action. When this

program location needs to be called, you can issue a CALL Pn or CJ Pn instruction, so the

program flow will continue at the pointer position.

17

3.3. PLC instructions

3.3.1. Introduction

Instructions are divided mainly into two groups: contact instructions and coil instructions .

Contact instructions are used to modify the condition context for coil instructions. Coil

instructions do not modify the condition, but executes according to the status of the current

condition.

It is generally not necessary to encode contact instructions directly, since easyLadder studio

software will do it for you through the graphical contact representation.

Some instructions require operands. Operands are parameters passed to the instruction during

execution. Operands are appended after the instruction name using a space as separator to

form the complete instruction sentence.

Most instructions need an execution condition to work, that is, cannot connect directly to the

ladder root line. If you need to run any instruction without condition, you can add the ALWAYS

ON device (special device S1) as the condition for the instruction.

Other instructions does not require conditions (END for example) and must connect directly to

the root line. These instructions are specified in the instruction reference.

INSTRUCTION OP1 OP2 ơ

Example: ADD D0 D1 D100

18

3.3.2. Instruction modifiers

Some easyLadder instructions can be modified using prefixes and suffixes. You can find

available modifiers for each command in the instruction reference section. Using modifiers you

can easily select several variants for the same instruction.

Offered modifiers for coil instructions are:

Valid prefixes:

U This prefix indicates UNSIGNED WORD operation. The instruction function is modified to

operate with UNSIGNED WORD data. Please note that most instructions can operate over

signed or unsigned data without differences, so no U prefix will be available. Others, like

comparison instructions, offer this modifier.

D This prefix indicates DOUBLE WORD operation. The instruction function is modified to

operate with DOUBLE WORD data. When accessing devices, two consecutive devices will

be used to form a 32 bit signed number.

UD This prefix indicates UNSIGNED DOUBLE WORD operation. The instruction function is

modified to operate with UNSIGNED DOUBLE WORD data. When accessing devices, two

consecutive devices will be used to form an unsigned 32 bit signed number.

F This prefix indicates FLOATING POINT operation. The instruction function is modified to

operate with FLOATING POINT data. When accessing devices, two consecutive devices

will be used to form a 32 bit floating point number.

Valid suffixes:

P This prefix indicates RISING EDGE operation. The instruction will be executed only on the

rising edge of the operation condition, that is, when the execution condition changes

from OFF to ON state. This modifier is available in almost all instructions.

F This prefix indicates FALLING EDGE operation. The instruction will be executed only on

the falling edge of the operation condition, that is, when the execution condition changes

from ON to OFF state. This modifier is available in almost all instructions.

For example, instruction DADDP indicates ADD instruction with DOUBLE WORD data, and

executed on rising edge.

Example: DADDP Č D (Prefix) + ADD (Instruction) + P (Suffix)

19

3.3.3. 16 bit mode

Some PLC instructions that operate on byte buffers operate differently regarding to the state

of the special bit device S24 (16BIT MODE). Serial instructions are examples of these

instructions.

All word PLC devices are 16 bit values. When operating byte buffers easyLadder offers two

options to manage word-to-byte and byte-to-word data movement:

8BIT MODE Using this mode, each word device is considered a byte device. Byte-to-device

and device-to-byte transfer is done using the lower byte of the device only.

Higher byte of the device is ignored in word to byte operations, and is set to 0 in

byte to word operations.

 This method eases program coding but wastes memory space. You can set this

mode by resetting to OFF S24 device. This is the default mode when the PLC

engine is switched to RUN mode.

16BIT MODE Using this mode word devices are fully used. Byte-to-device and device-to-byte

transfer is done using the lower byte first and then the higher byte of the device.

 This method requires more effort during program coding but takes advantage of

the full memory space. BTOW and WTOB instructions can help managing byte

packet devices. You can set this mode by setting to ON S24 device.

č Ď

8 BIT MODE (S24 OFF)

Byte buffer B0 B1 B2 B3

Word devices 0 B0 0 B1 0 B2 0 B3

č Ď

Byte buffer B0 B1 B2 B3 B4

16 BIT MODE (S24 ON)

Word devices B1 B0 B3 B2 ? B4

Device 1 Device 2 Device 3 Device 4

Device 1 Device 2 Device 3

20

3.3.4. Instruction summary

3.3.5. Contact instructions .. 23

LD. Load condition, OR condition, AND condition ... 23

LDI. Load NOT condition, OR NOT condition, AND NOT condition 23

LDP. Load, OR, AND pulse condition ... 23

LDIP. Load NOT, OR NOT, AND NOT pulse condition ... 24

LD>. Load compare, OR compare, AND compare ... 24

CNDI. NOT condition ... 25

CNDP. Pulse condition .. 25

CNDIP. NOT pulse condition ... 25

3.3.6. Bit management instructions .. 26

OUT. Output bit .. 26

OUTI. Output NOT bit .. 26

SET. Set bit or word device .. 26

RST. Reset bit or word device ... 27

PLS. Pulse bit device (rising edge)... 27

PLF. Pulse bit device (falling edge) ... 27

ALT. Invert bit device .. 28

3.3.7. Comparison instructions .. 28

CMP. Data comparison.. 28

3.3.8. Data movement instructions... 29

MOV. Data move .. 29

BMOV. Block move .. 29

BSET. Block fill .. 30

BTOW. Byte to word conversion .. 30

WTOB. Word to byte conversion .. 31

3.3.9. Arithmetic instructions ... 31

INC. Increment data ... 31

DEC. Decrement data .. 32

ADD. Data addition .. 32

SUB. Data subtraction ... 32

MUL. Data multiplication ... 33

DIV. Data division .. 33

21

3.3.10. Data logic instructions ... 34

WAND. Word / double word logic AND .. 34

WOR. Word / double word logic OR .. 34

WXOR. Word / double word logic OR ... 35

WNOT. Word / double word logic NOT ... 35

ROR. Word / double word shift right .. 35

ROL. Word / double word shift left ... 36

3.3.11. Special timer instructions ... 36

TIM. Timer control.. 36

RTIM. Retentive timer control... 36

3.3.12. Data conversion instructions ... 37

DOUBLE. Single word to double word .. 37

FIX. Floating point to word / double word .. 37

FLT. Word / double word to floating point .. 38

3.3.13. Floating-point math instructions ... 38

FSIN. Sine calculation ... 38

FCOS. Cosine calculation ... 39

FTAN. Tangent calculation ... 39

FASIN. Arc sine calculation .. 39

FACOS. Arc cosine calculation .. 40

FATAN. Arc tangent calculation .. 40

FSQRT. Square root calculation .. 40

FEXP. Exponent (base e) calculation ... 41

FLOG. Logarithm (base e) calculation ... 41

FEXP. Exponent (base e) calculation ... 41

3.3.14. Program flow instructions ... 42

CJ. Conditional jump ... 42

CALL. Subroutine call .. 42

RET. Return from subroutine .. 42

FOR. Loop execution ... 43

NEXT. End of loop execution ... 43

END. End of program ... 43

FEND. End of scan cycle ... 44

SHUTDOWN. System shutdown ... 44

22

3.3.15. Serial port instructions .. 45

RXD. Serial port receive ... 45

TXD. Serial port transmit .. 46

3.3.16. MODBUS TCP/IP instructions (from v1.4) .. 47

MODBUS. MODBUS TCP/IP connection setup ... 47

MODBUSRDI. MODBUS read discrete inputs ... 49

MODBUSRC. MODBUS read coils.. 50

MODBUSRIR. MODBUS read input registers .. 51

MODBUSRHR. MODBUS read holding registers .. 52

MODBUSWC. MODBUS write coils ... 53

MODBUSWR. MODBUS write registers ... 54

3.3.17. Other instructions ... 55

CRC16. CRC16 calculation ... 55

SCL. Linear scaling ... 56

AVG. Moving average .. 57

PID. PID control .. 58

23

3.3.5. Contact instructions

These instructions modify the execution condition. As you will note, every instruction is offered

in three variants LD, OR and AND, sharing the same symbol. LD variant is used to start the logic

operations and load the execution condition. OR and AND variants operates with this condition

to obtain the desired ladder logic. When programming using the easyLadder studio software it

is not required to encode AND or OR instructions since the software will compute these boolean

operations to encode your graphic logic.

LD. Load condition, OR condition, AND condition

OP1: Operand (Bit device)

LD
OR

AND

This instruction loads, ORs or ANDs the bit device OP1 to the execution
condition.

LDI. Load NOT condition, OR NOT condition, AND NOT condition

OP1: Operand (Bit device)

LDI
ORI

ANDI

This instruction loads, ORs or ANDs the inverted value (NOT) of the bit device
OP1 to the execution condition.

LDP. Load, OR, AND pulse condition

OP1: Operand (Bit device)

LDP
ORP

ANDP

LDF
ORF

ANDF

This instruction loads, ORs or ANDs the value of the rising edge (ÄP instructions)
or falling edge (ÄF instructions) of the bit device OP1 to the execution condition.

NOTE: The image shows the RISING EDGE instruction symbol.

24

LDIP. Load NOT, OR NOT, AND NOT pulse condition

OP1: Operand (Bit device)

LDIP
ORIP

ANDIP

LDIF
ORIF

ANDIF

This instruction loads, ORs or ANDs the inverted value (NOT) of the rising edge
(ÄP instructions) or falling edge (ÄF instructions) of the bit device OP1 to the
execution condition.

NOTE: The image shows the RISING EDGE instruction symbol.

LD>. Load compare, OR compare, AND compare

OP1: Operand 1 (Word device / Constant)
OP2: Operand 2 (Word device / Constant)

LD>
OR>

AND>

LD<
OR<

AND<

LD=
OR=
…

M
o

d
if

ie
rs

UNSIGNED WORD: UÄ
DOUBLE WORD: DÄ
UNSIGNED DOUBLE: UDÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

This instruction loads, ORs or ANDs the result of the comparison between OP1
and OP2 to the execution condition. OP1 and OP2 can be word values, unsigned
word values, dword values, unsigned dword values o float values, depending on
the prefix indicated.

Valid comparisons are GREATER THAN (>), LESS THAN (<), EQUAL TO (=), GREATER
THAN OR EQUAL TO (>=), LESS THAN OR EQUAL TO (<=), NOT EQUAL TO (<>). For
example, for NOT EQUAL TO comparison instructions are LD<>, OR<>, AND<>.

>

25

CNDI. NOT condition

No operands

CNDI
 This instruction inverts the execution condition.

CNDP. Pulse condition

No operands

CNDP
CNDF

This instruction detects a RISING EDGE (ÄP instruction) or FALLING EDGE (ÄF
instruction) in the input execution condition and puts the result to the output
execution condition.

NOTE: The image shows the RISING EDGE instruction symbol.

CNDIP. NOT pulse condition

No operands

CNDIP
CNDIF

This instruction detects a RISING EDGE (ÄP instruction) or FALLING EDGE (ÄF
instruction) in the input execution condition and puts the inverted (NOT) of the
result to the output execution condition.

NOTE: The image shows the RISING EDGE instruction symbol.

26

3.3.6. Bit management instructions

OUT. Output bit

OP1: Destination (Bit device / Timer device / Counter device)
OP2: Setpoint (Word device / Constant) (when OP1 is a Timer or Counter device)

OUT
 When OP1 references a counter or timer device, this instruction drives the

counter or timer. The OP2 parameter is required and designates the setpoint for
the timer or counter. Refer to sections 3.2.8. Counter devices and 3.2.9. Timer
devices for additional details.

For other bit devices in OP1, this instruction transfers the execution condition
value to the OP1 device. Parameter OP2 is not required. The OUT instruction
updates OP1 value in every execution. When the execution condition is ON, OP1
will be set to ON; when execution condition is OFF, OP1 will be reset to OFF.

OUTI. Output NOT bit

OP1: Destination (Bit device)

OUTI
 This instruction transfers the inverted (NOT) execution condition value to the

OP1 device. The OUTI instruction updates OP1 value in every execution. When
the execution condition is ON, OP1 will be reset to OFF; when execution
condition is OFF, OP1 will be set to ON.

SET. Set bit or word device

OP1: Destination (Bit device / Word device)

SET

M
o

d
if

ie
rs

DOUBLE WORD: DÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction sets to ON the bit device
OP1. If OP1 is a word or double word device, the value is set to 1.

When the execution condition is OFF, no action is performed.

SET

27

RST. Reset bit or word device

OP1: Destination (Bit device / Word device)

RST

M
o

d
if

ie
rs

DOUBLE WORD: DÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction sets to OFF the bit device
OP1. If OP1 is a word or double word device, the value is set to 0.

When OP1 is a timer or counter device, the corresponding timer or counter is
manually reset.

When the execution condition is OFF, no action is performed.

PLS. Pulse bit device (rising edge)

OP1: Destination (Bit device)

PLS
This instruction detects a RISING EDGE (OFF to ON transition) in the execution
condition and outputs the result to the OP1 bit device. When a RISING EDGE is
detected OP1 turns ON, in all other cases the OP1 will be reset to OFF.

PLF. Pulse bit device (falling edge)

OP1: Destination (Bit device)

PLF
This instruction detects a FALLING EDGE (ON to OFF transition) in the execution
condition and outputs the result to the OP1 bit device. When a FALLING EDGE is
detected OP1 turns ON, in all other cases the OP1 will be reset to OFF.

RST

PLS

PLF

28

ALT. Invert bit device

OP1: Destination (Bit device)

ALT

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction inverts (NOT) OP1 value and
stores the result back to OP1. If OP1 is ON, device OP1 will be reset to OFF; if OP1
is OFF, device OP1 will be set to ON.

When the execution condition is OFF, no action is performed.

3.3.7. Comparison instructions

CMP. Data comparison

OP1: Operand 1 (Word device / Constant)
OP2: Operand 2 (Word device / Constant)

CMP

M
o

d
if

ie
rs

UNSIGNED WORD: UÄ
DOUBLE WORD: DÄ
UNSIGNED DOUBLE: UDÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When instruction condition is ON, this instruction compares OP1 data against
OP2 data, according to the supplied modifiers, and signals the result of the
comparison by setting or resetting the special devices EQUAL (S10), GREAT (S11)
and LESS (S12).

For example, when issuing CMP K10 K20, EQUAL (S10) will be reset, GREAT (S11)
will be reset and LESS (S12) will be set.

When the execution condition is OFF, no action is performed.

ALT

CMP

29

3.3.8. Data movement instructions

MOV. Data move

OP1: Source (Word device / Constant)
OP2: Destination (Word device)

MOV
M

o
d

if
ie

rs

DOUBLE WORD: DÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction moves OP1 data to OP2
device, according to the supplied modifiers. When modifier DÄ or FÄ is used,
two consecutive words will be used for getting and storing the value.

When the execution condition is OFF, no action is performed.

BMOV. Block move

OP1: Source (Word device / Bit device)
OP2: Destination (Word device / Bit device)
OP3: Count (Word device / Constant)

BMOV

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction moves (copies) a block of
OP3 devices starting from OP1 device to OP2 and following devices. Both OP1
and OP2 must have the same type (Bit or Word).

For example, BMOV D0 D100 K3 will copy D0 to D100, D1 to D101 and D2 to
D102.

When the execution condition is OFF, no action is performed.

MOV

BMOV

30

BSET. Block fill

OP1: Source (Word device / Bit device / Constant)
OP2: Destination (Word device / Bit device)
OP3: Count (Word device / Constant)

BSET

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction fills a block of OP3 devices
starting from OP2 device with the value indicated in OP1. Both OP1 and OP2
must have the same type (Bit or Word), unless OP2 is a bit device. In this case
OP1 can have any kind, so destination bits will be set if OP1 is not 0.

For example, BSET D0 D100 K3 will set D100, D101 and D102 with the contents
of D0.

When the execution condition is OFF, no action is performed.

BTOW. Byte to word conversion

OP1: First source byte (Word device)
OP2: First destination word (Word device)
OP3: Byte count (Word device / Constant)

BTOW

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction packs a count of OP3
devices starting at OP1 (containing byte values) to word devices starting at OP2.
Lower byte of OP1 is copied to the lower byte of OP2, and lower byte of OP1+1
is copied to the higher byte of OP2 and so on. Higher bytes of source devices are
ignored. For example, when OP3 is 3:

When the execution condition is OFF, no action is performed.

This instruction is useful when working in 16BIT MODE (see section 3.3.3.)

BSET

BTOW

X B0 X B1 X B2 Č B1 B0 ? B2

OP1 OP1+1 OP1+2 OP2 OP2+1

31

WTOB. Word to byte conversion

OP1: First source word (Word device)
OP2: First destination byte (Word device)
OP3: Byte count (Word device / Constant)

WTOB

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction extracts a total count of OP3
bytes starting at OP1 (containing packed byte values) to devices starting at OP2.
Lower byte of OP1 is copied to the lower byte of OP2, higher byte of OP1 is
copied to the lower byte of OP2+1 and so on. Higher bytes of destination devices
are set to 0. For example, when OP3 is 3.

When the execution condition is OFF, no action is performed.

This instruction is useful when working in 16BIT MODE (see section 3.3.3.)

3.3.9. Arithmetic instructions

INC. Increment data

OP1: Operand (Word device)

INC

M
o

d
if

ie
rs

DOUBLE WORD: DÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction increments (+1) OP1 data
value, according to the supplied modifiers, storing the result back to OP1 device.
When modifier DÄ or FÄ is used, two consecutive words will be used for getting
and storing the value.

When the execution condition is OFF, no action is performed.

INC

WTOB

B1 B0 ? B2 Č 0 B0 0 B1 0 B2

OP1 OP1+1 OP2 OP2+1 OP2+2

32

DEC. Decrement data

OP1: Operand (Word device)

DEC

M
o

d
if

ie
rs

DOUBLE WORD: DÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction decrements (-1) OP1 data
value, according to the supplied modifiers, storing the result back to OP1 device.
When modifier DÄ or FÄ is used, two consecutive words will be used for getting
and storing the value.

When the execution condition is OFF, no action is performed.

ADD. Data addition

OP1: Operand 1 (Word device / Constant)
OP2: Operand 2 (Word device / Constant)
OP3: Result (Word device)

ADD

M
o

d
if

ie
rs

DOUBLE WORD: DÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction sums OP1 data value to OP2
data value, according to the supplied modifiers, storing the result to OP3 device
(OP3 = OP1 + OP2). When modifier DÄ or FÄ is used, two consecutive words will
be used for getting and storing the value.

When the execution condition is OFF, no action is performed.

SUB. Data subtraction

OP1: Minuend (Word device / Constant)
OP2: Subtrahend (Word device / Constant)
OP3: Result (Word device)

SUB

M
o

d
if

ie
rs

DOUBLE WORD: DÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction subtracts OP1 data value
minus OP2 data value, according to the supplied modifiers, storing the result to
OP3 device (OP3 = OP1 Ɩ OP2). When modifier DÄ or FÄ is used, two consecutive
words will be used for getting and storing the value.

When the execution condition is OFF, no action is performed.

DEC

ADD

SUB

33

MUL. Data multiplication

OP1: Multiplicand (Word device / Constant)
OP2: Multiplier (Word device / Constant)
OP3: Result (Word device)

MUL

M
o

d
if

ie
rs

UNSIGNED WORD: UÄ
DOUBLE WORD: DÄ
UNSIGNED DOUBLE: UDÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction multiplies OP1 data value
by OP2 data value, according to the supplied modifiers, storing the result to OP3
device (OP3 = OP1 * OP2).

When using single words (no modifier or UÄ) input devices will use one word,
but result will use two words (DOUBLE WORD result).

When using double words or float modifiers (UÄ, UDÄ or FÄ modifiers) two
consecutive words will be used for getting and storing the result in the
corresponding format.

When the execution condition is OFF, no action is performed.

DIV. Data division

OP1: Dividend (Word device / Constant)
OP2: Divisor (Word device / Constant)
OP3: Result (Word device)

DIV

M
o

d
if

ie
rs

UNSIGNED WORD: UÄ
DOUBLE WORD: DÄ
UNSIGNED DOUBLE: UDÄ
FLOATING POINT: FÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction divides OP1 data value by
OP2 data value, according to the supplied modifiers, storing the result to OP3
device (OP3 = OP1 / OP2).

When using single words (no modifier or UÄ) input devices will use one word,
but result will use two words. First word will contain division result (quotient),
next word will contain the remainder of the operation.

When using double words (UÄ or UDÄ modifiers) two consecutive words will be
used for getting parameters, and four consecutive words will be used for storing
the result. First two result words will contain the quotient in double word format;
next two words will contain the remainder in double word format.

When using floating point (FÄ modifier) two consecutive words will be used for
getting parameters and storing result in floating point format. No remainder is
returned.

When the execution condition is OFF, no action is performed.

MUL

DIV

34

3.3.10. Data logic instructions

WAND. Word / double word logic AND

OP1: Operand 1 (Word device / Constant)
OP2: Operand 2 (Word device / Constant)
OP3: Result (Word device)

WAND
M

o
d

if
ie

rs

DOUBLE WORD: DÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the logical AND
between OP1 and OP2 data values storing the result to OP3 device (OP3 = OP1
AND OP2). When modifier DÄ is used, two consecutive words will be used for
getting and storing the value.

When the execution condition is OFF, no action is performed.

WOR. Word / double word logic OR

OP1: Operand 1 (Word device / Constant)
OP2: Operand 2 (Word device / Constant)
OP3: Result (Word device)

WOR

M
o

d
if

ie
rs

DOUBLE WORD: DÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the logical OR
between OP1 and OP2 data values storing the result to OP3 device (OP3 = OP1
OR OP2). When modifier DÄ is used, two consecutive words will be used for
getting and storing the value.

When the execution condition is OFF, no action is performed.

WAND

WOR

35

WXOR. Word / double word logic OR

OP1: Operand 1 (Word device / Constant)
OP2: Operand 2 (Word device / Constant)
OP3: Result (Word device)

WXOR

M
o

d
if

ie
rs

DOUBLE WORD: DÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the logical XOR
(eXclusive OR) between OP1 and OP2 data values storing the result to OP3
device (OP3 = OP1 XOR OP2). When modifier DÄ is used, two consecutive words
will be used for getting and storing the value.

When the execution condition is OFF, no action is performed.

WNOT. Word / double word logic NOT

OP1: Source (Word device / Constant)
OP2: Result (Word device)

WNOT

M
o

d
if

ie
rs

DOUBLE WORD: DÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the logical NOT
of OP1 data value storing the result into OP2 device (OP2 = NOT OP1). When
modifier DÄ is used, two consecutive words will be used for getting and storing
the value.

When the execution condition is OFF, no action is performed.

ROR. Word / double word shift right

OP1: Operand (Word device)
OP2: Positions (Word device / Constant)

ROR

M
o

d
if

ie
rs

DOUBLE WORD: DÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction shifts OP1 data value to the
right OP2 bit positions, storing the result back to OP1 device (OP1 = OP1>>OP2).
No carry is used in this operation. When modifier DÄ is used, two consecutive
words will be used for getting and storing the value.

For example, if D0 is binary 0b1010111110001001, when executing ROR D0 K2,
device D0 will contain binary 0b0010101111100010.

When the execution condition is OFF, no action is performed.

WXOR

WNOT

ROR

36

ROL. Word / double word shift left

OP1: Operand (Word device)
OP2: Positions (Word device / Constant)

ROL

M
o

d
if

ie
rs

DOUBLE WORD: DÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction shifts OP1 data value to the
left OP2 bit positions, storing the result back to OP1 device (OP1 = OP1<<OP2).
No carry is used in this operation. When modifier DÄ is used, two consecutive
words will be used for getting and storing the value.

For example, if D0 is binary 0b1010111110001001, when executing ROL D0 K2,
device D0 will contain binary 0b1011111000100100.

When the execution condition is OFF, no action is performed.

3.3.11. Special timer instructions

TIM. Timer control

OP1: Timer (Timer device)
OP2: Setpoint (Word device / Constant)

TIM
 This instruction drives the timer OP1. The OP2 parameter designates the setpoint

for the timer. Refer to section 3.2.9. Timer devices for additional details.

This instruction is fully equivalent to the OUT Tn instruction.

RTIM. Retentive timer control

OP1: Timer (Timer device)
OP2: Setpoint (Word device / Constant)

RTIM
 This instruction drives the timer OP1. The OP2 parameter designates the setpoint

for the timer. Retentive timers do not reset when execution condition is OFF. You
must reset manually these timers using RST Tn instruction.

Refer to section 3.2.9. Timer devices for additional details.

ROL

TIM

RTIM

37

3.3.12. Data conversion instructions

DOUBLE. Single word to double word

OP1: Source (Word device / Constant)
OP2: Result (Word device)

DOUBLE
M

o
d

if
ie

rs

UNSIGNED WORD: UÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction converts OP1 data value,
according to the supplied modifiers, to a double word value storing the result in
OP2 and next device.

When the execution condition is OFF, no action is performed.

FIX. Floating point to word / double word

OP1: Source (Word device / Constant - float value)
OP2: Result (Word device)

FIX

M
o

d
if

ie
rs

UNSIGNED WORD: UÄ
DOUBLE WORD: DÄ
UNSIGNED DOUBLE: UDÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction converts OP1 floating point
value to a word or double word value in OP2, signed or unsigned, according to
the supplied modifiers.

When using double words (UÄ or UDÄ modifiers) two consecutive words will be
used for storing the result.

When the execution condition is OFF, no action is performed.

DOUBLE

FIX

38

FLT. Word / double word to floating point

OP1: Source (Word device / Constant)
OP2: Result (Word device - float value)

FLT

M
o

d
if

ie
rs

UNSIGNED WORD: UÄ
DOUBLE WORD: DÄ
UNSIGNED DOUBLE: UDÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction converts OP1 value,
according to the supplied modifiers, to a floating point value in OP2.

When using double words (UÄ or UDÄ modifiers) two consecutive words will be
used for getting OP1 parameter.

When the execution condition is OFF, no action is performed.

3.3.13. Floating-point math instructions

FSIN. Sine calculation

OP1: Operand (Word device / Constant)
OP2: Result (Word device)

FSIN

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the sine of OP1
value and stores the result in OP2. Both parameters are floating-point data,
requiring two consecutive word devices. OP1 is expressed in radians.

When the execution condition is OFF, no action is performed.

FLT

FSIN

39

FCOS. Cosine calculation

OP1: Word device / Constant
OP2: Word device

FCOS

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the cosine of OP1
value and stores the result in OP2. Both parameters are floating-point data,
requiring two consecutive word devices. OP1 is expressed in radians.

When the execution condition is OFF, no action is performed.

FTAN. Tangent calculation

OP1: Operand (Word device / Constant)
OP2: Result (Word device)

FTAN

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the tangent of
OP1 value and stores the result in OP2. Both parameters are floating-point data,
requiring two consecutive word devices. OP1 is expressed in radians.

When the execution condition is OFF, no action is performed.

FASIN. Arc sine calculation

OP1: Operand (Word device / Constant)
OP2: Result (Word device)

FASIN

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the arc sine of
OP1 value and stores the result in OP2. Both parameters are floating-point data,
requiring two consecutive word devices. OP2 is given in radians.

When the execution condition is OFF, no action is performed.

FCOS

FTAN

FASIN

40

FACOS. Arc cosine calculation

OP1: Operand (Word device / Constant)
OP2: Result (Word device)

FACOS

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the arc cosine of
OP1 value and stores the result in OP2. Both parameters are floating-point data,
requiring two consecutive word devices. OP2 is given in radians.

When the execution condition is OFF, no action is performed.

FATAN. Arc tangent calculation

OP1: Operand (Word device / Constant)
OP2: Result (Word device)

FATAN

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the arc tangent
of OP1 value and stores the result in OP2. Both parameters are floating-point
data, requiring two consecutive word devices. OP2 is given in radians.

When the execution condition is OFF, no action is performed.

FSQRT. Square root calculation

OP1: Operand (Word device / Constant)
OP2: Result (Word device)

FSQRT

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction calculates the square root
of OP1 value and stores the result in OP2 (OP2 = ǌOP1). Both parameters are
floating-point data, requiring two consecutive word devices.

When the execution condition is OFF, no action is performed.

FACOS

FATAN

FSQRT

41

FEXP. Exponent (base e) calculation

OP1: Exponent (Word device / Constant)
OP2: Result (Word device)

FEXP

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction calculates the natural (base
e) exponent of OP1 value and stores the result in OP2 (OP2 = eOP1). Both
parameters are floating-point data, requiring two consecutive word devices.

When the execution condition is OFF, no action is performed.

FLOG. Logarithm (base e) calculation

OP1: Operand (Word device / Constant)
OP2: Result (Word device)

FLOG

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction calculates the natural (base
e) logarithm of OP1 value and stores the result in OP2 (OP2 = loge OP1). Both
parameters are floating-point data, requiring two consecutive word devices.

When the execution condition is OFF, no action is performed.

FEXP. Exponent (base e) calculation

OP1: Base (Word device / Constant)
OP2: Exponent (Word device / Constant)
OP3: Result (Word device)

FPWR

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction raises OP1 value to the
power of OP2 value and stores the result in OP3 (OP3 = OP1OP2). All parameters
are floating-point data, requiring two consecutive word devices.

When the execution condition is OFF, no action is performed.

FEXP

FLOG

FPWR

42

3.3.14. Program flow instructions

CJ. Conditional jump

OP1: Jump destination (Pointer)

CJ
M

o
d

if
ie

rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction makes the program jump to
the pointer specified in OP1. The program will continue running instructions at
this pointer position. Any instruction between CJ instruction location and the
jump destination pointer will not be executed.

When the execution condition is OFF, no action is performed.

CALL. Subroutine call

OP1: Call destination (Pointer)

CALL

M
o

d
if

ie
rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction makes the program jump to
the pointer specified in OP1. The program will continue running instructions at
the pointer position, until a RET instruction is found. When RET is found, the
program will return to the next instruction just after CALL.

Any instruction between the CALL instruction and the jump destination, and
between the RET position and the CALL location will not be executed.

NOTE: when doing the CALL, current condition stack is saved into memory and
restored after RET, so program status after return remains unchanged. Due to
memory restrictions, you can nest up to 100 calls. Take this into account when
doing recursive calls.

When the execution condition is OFF, no action is performed.

RET. Return from subroutine

No operands

RET
 This instruction makes the program return to the next instruction after CALL. For

more information see CALL instruction.

RET instruction runs without execution condition. Must be connected directly to
the root line.

CJ

CALL

RET

43

FOR. Loop execution

OP1: Repetitions (Word device / Constant)

FOR
 This instruction is used together with the NEXT instruction to create program

loops, and references the start of the loop.

FOR makes the program to execute the code between FOR and the
correspondent NEXT instruction OP1 times. When the FOR instruction is found,
the PLC engine will store the value of OP1 in an internal (loop count) variable
continuing to execute instructions until NEXT is found. When found, loop count
variable will be decremented. If not zero, the program will jump again to the next
instruction after FOR, repeating the loop. When zero, the program will continue
after NEXT.

You can nest up to 100 FOR-NEXT loops.

NOTE: Even if the FOR instruction is executed with an OP1 value of 0, the loop
will be executed 1 time, so an OP1 value of 0 is equivalent to an OP1 value of 1.

FOR instruction runs without execution condition. It must be connected directly
to the root line.

NEXT. End of loop execution

No operands

NEXT
 This instruction is used together with the FOR instruction to create program

loops, and references the end of the loop. Refer to the FOR instruction for details.

NEXT instruction runs without execution condition. It must be connected directly
to the root line.

END. End of program

No operands

END
 There are two instructions related to the end of the program: END and FEND. The

END instruction indicates the end of the program code. Like the FEND instruction,
when the PLC engine reaches this instruction, the scan cycle ends.

If your program contains subroutines out of the main program cycle, these
subroutines must be placed after the FEND instruction. So the FEND instruction
indicates the end of the main scan cycle while the END instruction indicates the
end of the program code.

The END instruction is required and must be the LAST instruction at the end of
the entire code. The FEND instruction is only required when there is code after
the main program cycle.

END instruction runs without execution condition. It must be connected directly
to the root line.

FOR

NEXT

END

44

FEND. End of scan cycle

No operands

FEND
 There are two instructions related to the end of the program: END and FEND. The

FEND instruction indicates the end of the scan cycle. Like the END instruction,
when the PLC engine reaches this instruction, the scan cycle ends.

If your program contains subroutines out of the main program cycle, these
subroutines must be placed after the FEND instruction. So the FEND instruction
indicates the end of the main scan cycle while the END instruction indicates the
end of the program code.

The END instruction is required and must be the LAST instruction at the end of
the entire code. The FEND instruction is only required when there is code after
the main program cycle.

FEND instruction runs without execution condition. It must be connected directly
to the root line.

SHUTDOWN. System shutdown

No operands

SHUTDOWN
 When the execution condition is ON, this instruction shutdowns the system by

issuing a poweroff system command.

This command is especially useful when controlling the RasPICER power. When
configuring the PLC to not power down automatically when external power
supply is lost, you can do your required tasks before shutting down the system
with this command. When power is restored, the RasPICER board will power the
PLC again to recover functions.

When the execution condition is OFF, no action is performed.

FEND

SHUTDOWN

45

3.3.15. Serial port instructions

RXD. Serial port receive

OP1: Port number 1,2 or 3 (Word device / Constant)
OP2: First buffer device (Word device)
OP3: Byte count (Word device / Constant)

RXD
 This instruction is used to receive bytes from any serial port. OP1 references the

port number. Use a value of 1 for the RasPICER RS485 port, a value of 2 for the
RasPICER RS232 port, and a value of 3 for the Raspberry ttyAMA0 TTL port.

Port must be open prior to use this instruction by writing port configuration to
special device SD16, SD17 or SD18, depending on the port used.

When RXD is executed with an ON condition, available received port data up to
OP3 bytes will be copied to OP2 user buffer. After that, SD28, SD29 or SD30 will
contain the number of bytes copied to the user buffer, and the entire receive
buffer will be discarded. For example, when there are 12 bytes available for read
and you execute RXD K1 D0 K5, a total of 5 bytes will be copied to D0 device,
SD28 will be set to 5 and all 12 bytes will be removed for the serial buffer.

The byte count parameter OP3 must be less or equal than 1024, because this is
the size of the internal receive buffer.

Data is copied to the user buffer according to the status of the 16BIT MODE
special device S24. When S24 is OFF (default) bytes will be copied to
independent word devices (in the above example, first byte to D0, second byte
to D1…). When S24 is ON bytes will be copied using the entire word device (first
byte to the lower byte of D0, second byte to the higher byte of D0, third byte to
the lower byte of D1…). More information on section 3.3.2. 16 bit instruction
mode.

The number of available bytes on the serial buffer can be monitored through
special word devices SD25, SD26 and SD27 (number of available bytes), or bit
devices S25, S26 and S27 (any byte available), depending on the port used. You
can call the RXD instruction without data available, but is a good practice to
check the status of S25, S26 and S27 before execution.

For more information refer to section 3.4 Serial port programming.

When the execution condition is OFF, no action is performed.

RXD

46

TXD. Serial port transmit

OP1: Port number 1,2 or 3 (Word device / Constant)
OP2: First buffer device (Word device)
OP3: Byte count (Word device / Constant)

TXD
 This instruction is used to transmit bytes to any serial port. OP1 references the

port number. Use a value of 1 for the RasPICER RS485 port, a value of 2 for the
RasPICER RS232 port, and a value of 3 for the Raspberry ttyAMA0 TTL port.

Port must be open prior to use this instruction by writing port configuration to
special device SD16, SD17 or SD18, depending on the port used.

When TXD is executed with an ON condition, OP3 bytes will be copied from OP2
user buffer to the internal transmit buffer of the port. The system will transfer
these buffer to the physical serial port as a background operation. When TXD is
executed, special bit devices S28, S29 or S30 (depending on the port used) will
be reset to OFF to indicate the internal transmit buffer is busy (there is some data
in the buffer).

The byte count parameter OP3 must be less than 1024, because this is the size
of the internal transmit buffer. Care must be taken when using the TXD
instruction to not overflow the internal transmit buffer. You can avoid this
problem by checking that special bit device S28, S29 or S30 is ON before issuing
the TXD instruction. These especial bits indicate that the internal transmit buffer
is empty and ready to contain up to 1024 bytes.

Data is copied from the user buffer according to the status of the 16BIT MODE
special device S24. Consider the instruction TXD K1 D0 K10. When S24 is OFF
(default) bytes will be copied from independent word devices (first byte from
D0, second byte from D1…). When S24 is ON bytes will be copied using the entire
word device (first byte from the lower byte of D0, second byte from the higher
byte of D0, third byte from the lower byte of D1…). More information on section
3.3.2. 16 bit instruction mode.

For more information refer to section 3.4 Serial port programming.

When the execution condition is OFF, no action is performed.

TXD

47

3.3.16. MODBUS TCP/IP instructions (from v1.4)

MODBUS. MODBUS TCP/IP connection setup

OP1: First configuration device (Word device)

MODBUS
 This instruction is used to configure a MODBUS TCP/IP client connection to a

MODBUS TCP/IP device.

OP1 designates the first device of a buffer used to configure the MODBUS
connection. A total of 8 consecutive word devices will be used in this area. You
need to set these parameters before instruction execution.

OP1 Status MODBUS connection status

OP1+1 Error MODBUS connection error

OP1+2 IP1 First byte of peer IP address

OP1+3 IP2 Second byte of peer IP address

OP1+4 IP3 Third byte of peer IP address

OP1+5 IP4 Forth byte of peer IP address

OP1+6 TCP port TCP port (usually 502)

OP1+7 Unit MODBUS destination unit

Word device OP1 contains the Status of the MODBUS connection. This word is a
mask of several bits according to the following table:

Bit 0 [OP1].0 Ready MODBUS connection ready

Bit 1 [OP1].1 Complete MODBUS transfer complete

Bit 2 [OP1].2 Error MODBUS error detected

 …

Bit 6 [OP1].6 Enabled MODBUS connection enabled

Bit 7 [OP1].7 Connected Connected to the MODBUS device

You can use up to 64 MODBUS instructions to connect to up to 64 MODBUS
devices. These instructions cannot share the same OP1 device buffer, just
because this OP1 device is used to reference the MODBUS connection in other
MODBUS related instructions.

When the MODBUS instruction is executed (with an ON or OFF condition), value
of Status (OP1) and Error (OP1+1) words are refreshed according to the status of
the MODBUS connection. The Ready bit indicates that the MODBUS connection
is ready for starting MODBUS Read or Write operations. Is a good practice to
check the status of this bit before starting a MODBUS register Read or Write
instruction.

Continues

MODBUS

48

Continued

MODBUS read and write operations are performed as a background process.
When any MODBUS read or write operation is complete and the MODBUS
instruction is executed, the Complete bit or Error bit will be set according to the
success of the operation. On MODBUS read operations, destination devices will
be refreshed only when the MODBUS instruction is executed. Please note that
the Complete bit will be set only 1 cycle after the completion of the read or write
operation. After this cycle, the MODBUS instruction will reset automatically the
Complete bit.

When any error is detected during connection, read or write operation, the Error
bit (OP1.2) will be set and the Error word (OP1+1) will contain information about
this error. The following table contains possible error values:

0 No error

1 MODBUS exception 1 (illegal function)

2 MODBUS exception 2 (illegal data address)

3 MODBUS exception 3 (illegal data value)

4 MODBUS exception 4 (slave device failure)

5 MODBUS exception 5 (acknowledge)

6 MODBUS exception 6 (slave device busy)

8 MODBUS exception 8 (memory parity error)

10 MODBUS exception 10 (gateway path unavailable)

11 MODBUS exception 11 (gateway target failed to respond)

20 Timeout contacting MODBUS device

21 Frame error from MODBUS device

22 Unable to connect to MODBUS device

23 No free connections (more than 64 MODBUS instructions)

24 R/W operation without matching MODBUS instruction

25 Exceeded max R/W devices in MODBUS Read/Write

When MODBUS instruction is executed with an ON condition, easyLadder will try
to connect to the device using the IP / port specified in the OP1 area. When
connection is lost or unsuccessful, easyLadder will retry the connection
indefinitely. During instruction execution, IP address and port can be modified,
but new values will be used only when an OFF to ON condition is detected in the
MODBUS instruction.

When MODBUS instruction is executed with an OFF condition, easyLadder will
close the connection to the MODBUS device.

For more information refer to section 3.5 MODBUS functions.

MODBUS

MODBUS

49

MODBUSRDI. MODBUS read discrete inputs

OP1: First configuration device (Word device)
OP2: Starting MODBUS address (Word device / Constant)
OP3: Number of inputs (Word device / Constant)
OP4: First destination device (Bit device)

MODBUSRDI
 This instruction is used to read discrete inputs from remote MODBUS devices.

A valid call to MODBUS instruction with the same OP1 parameter must be
performed prior to use any MODBUS related instruction.

As a tip, the MODBUS instruction must be executed in every scan, prior to any
read or write instruction. Read and write instructions can be used in
subroutines.

Refer to MODBUS instruction for information about OP1 parameter.

When MODBUSRDI is executed with an ON condition, a MODBUS read discrete
inputs operation (function code 2) is started as a background operation. A
number of OP3 inputs (up to 2000), starting at MODBUS address OP2 will be
transferred to easyLadder bit devices starting at OP4.

The Ready bit in OP1 indicates that the MODBUS connection is ready for
starting MODBUS Read or Write operations. Is a good practice to check the
status of this bit before starting a MODBUS register Read or Write instruction.
Executing any Read or Write instruction when the Ready bit is OFF is allowed,
but the instruction will not be executed (no error indication), so the user
cannot know if the read or write operation is started.

Updates to status word, error word and destination devices are performed
when the corresponding MODBUS operation is executed after operation
completes. On completion, the Complete bit or Error bit in OP1 will be set
according to the success of the operation. Please note that the Complete bit
will be set only 1 cycle after the completion of the read or write operation.
After this cycle, the MODBUS instruction will reset automatically the Complete
bit.

When MODBUSRDI is executed with an OFF condition no operation is
performed.

For more information refer to section 3.5 MODBUS functions.

MODBUSRDI

50

MODBUSRC. MODBUS read coils

OP1: First configuration device (Word device)
OP2: Starting MODBUS address (Word device / Constant)
OP3: Number of coils (Word device / Constant)
OP4: First destination device (Bit device)

MODBUSRC
 This instruction is used to read coils from remote MODBUS devices. A valid call

to MODBUS instruction with the same OP1 parameter must be performed prior
to use any MODBUS related instruction.

As a tip, the MODBUS instruction must be executed in every scan, prior to any
read or write instruction. Read and write instructions can be used in
subroutines.

Refer to MODBUS instruction for information about OP1 parameter.

When MODBUSRC is executed with an ON condition, a MODBUS read coils
operation (function code 1) is started as a background operation. A number of
OP3 coils (up to 2000), starting at MODBUS address OP2 will be transferred to
easyLadder bit devices starting at OP4.

The Ready bit in OP1 indicates that the MODBUS connection is ready for
starting MODBUS Read or Write operations. Is a good practice to check the
status of this bit before starting a MODBUS register Read or Write instruction.
Executing any Read or Write instruction when the Ready bit is OFF is allowed,
but the instruction will not be executed (no error indication), so the user
cannot know if the read or write operation is started.

Updates to status word, error word and destination devices are performed
when the corresponding MODBUS operation is executed after operation
completes. On completion, the Complete bit or Error bit in OP1 will be set
according to the success of the operation. Please note that the Complete bit
will be set only 1 cycle after the completion of the read or write operation.
After this cycle, the MODBUS instruction will reset automatically the Complete
bit.

When MODBUSRC is executed with an OFF condition no operation is
performed.

For more information refer to section 3.5 MODBUS functions.

MODBUSRC

51

MODBUSRIR. MODBUS read input registers

OP1: First configuration device (Word device)
OP2: Starting MODBUS address (Word device / Constant)
OP3: Number of registers (Word device / Constant)
OP4: First destination device (Word device)

MODBUSRIR
 This instruction is used to read input registers from remote MODBUS devices.

A valid call to MODBUS instruction with the same OP1 parameter must be
performed prior to use any MODBUS related instruction.

As a tip, the MODBUS instruction must be executed in every scan, prior to any
read or write instruction. Read and write instructions can be used in
subroutines.

Refer to MODBUS instruction for information about OP1 parameter.

When MODBUSRIR is executed with an ON condition, a MODBUS read input
registers operation (function code 4) is started as a background operation. A
number of OP3 registers (up to 125), starting at MODBUS address OP2 will be
transferred to easyLadder word devices starting at OP4.

The Ready bit in OP1 indicates that the MODBUS connection is ready for
starting MODBUS Read or Write operations. Is a good practice to check the
status of this bit before starting a MODBUS register Read or Write instruction.
Executing any Read or Write instruction when the Ready bit is OFF is allowed,
but the instruction will not be executed (no error indication), so the user
cannot know if the read or write operation is started.

Updates to status word, error word and destination devices are performed
when the corresponding MODBUS operation is executed after operation
completes. On completion, the Complete bit or Error bit in OP1 will be set
according to the success of the operation. Please note that the Complete bit
will be set only 1 cycle after the completion of the read or write operation.
After this cycle, the MODBUS instruction will reset automatically the Complete
bit.

When MODBUSRIR is executed with an OFF condition no operation is
performed.

For more information refer to section 3.5 MODBUS functions.

MODBUSRIR

52

MODBUSRHR. MODBUS read holding registers

OP1: First configuration device (Word device)
OP2: Starting MODBUS address (Word device / Constant)
OP3: Number of registers (Word device / Constant)
OP4: First destination device (Word device)

MODBUSRHR
 This instruction is used to read holding registers from remote MODBUS

devices. A valid call to MODBUS instruction with the same OP1 parameter must
be performed prior to use any MODBUS related instruction.

As a tip, the MODBUS instruction must be executed in every scan, prior to any
read or write instruction. Read and write instructions can be used in
subroutines.

Refer to MODBUS instruction for information about OP1 parameter.

When MODBUSRHR is executed with an ON condition, a MODBUS read holding
registers operation (function code 3) is started as a background operation. A
number of OP3 registers (up to 125), starting at MODBUS address OP2 will be
transferred to easyLadder word devices starting at OP4.

The Ready bit in OP1 indicates that the MODBUS connection is ready for
starting MODBUS Read or Write operations. Is a good practice to check the
status of this bit before starting a MODBUS register Read or Write instruction.
Executing any Read or Write instruction when the Ready bit is OFF is allowed,
but the instruction will not be executed (no error indication), so the user
cannot know if the read or write operation is started.

Updates to status word, error word and destination devices are performed
when the corresponding MODBUS operation is executed after operation
completes. On completion, the Complete bit or Error bit in OP1 will be set
according to the success of the operation. Please note that the Complete bit
will be set only 1 cycle after the completion of the read or write operation.
After this cycle, the MODBUS instruction will reset automatically the Complete
bit.

When MODBUSRHR is executed with an OFF condition no operation is
performed.

For more information refer to section 3.5 MODBUS functions.

MODBUSRHR

53

MODBUSWC. MODBUS write coils

OP1: First configuration device (Word device)
OP2: First source device (Bit device)
OP3: Number of registers (Word device / Constant)
OP4: First destination MODBUS address (Word device / Constant)

MODBUSWC
 This instruction is used to write coils to remote MODBUS devices. A valid call

to MODBUS instruction with the same OP1 parameter must be performed prior
to use any MODBUS related instruction.

As a tip, the MODBUS instruction must be executed in every scan, prior to any
read or write instruction. Read and write instructions can be used in
subroutines.

Refer to MODBUS instruction for information about OP1 parameter.

When MODBUSWC is executed with an ON condition, a MODBUS write multiple
coils operation (function code 15) is started as a background operation. A
number of OP3 devices (up to 1968), starting at source device OP2 will be
transferred to MODBUS address starting at OP4.

The Ready bit in OP1 indicates that the MODBUS connection is ready for
starting MODBUS Read or Write operations. Is a good practice to check the
status of this bit before starting a MODBUS register Read or Write instruction.
Executing any Read or Write instruction when the Ready bit is OFF is allowed,
but the instruction will not be executed (no error indication), so the user
cannot know if the read or write operation is started.

Updates to status word and error word are performed when the corresponding
MODBUS operation is executed after operation completes. On completion, the
Complete bit or Error bit in OP1 will be set according to the success of the
operation. Please note that the Complete bit will be set only 1 cycle after the
completion of the read or write operation. After this cycle, the MODBUS
instruction will reset automatically the Complete bit.

When MODBUSWC is executed with an OFF condition no operation is
performed.

For more information refer to section 3.5 MODBUS functions.

MODBUSWC

54

MODBUSWR. MODBUS write registers

OP1: First configuration device (Word device)
OP2: First source device (Word device)
OP3: Number of registers (Word device / Constant)
OP4: First destination MODBUS address (Word device / Constant)

MODBUSWR
 This instruction is used to write registers to remote MODBUS devices. A valid

call to MODBUS instruction with the same OP1 parameter must be performed
prior to use any MODBUS related instruction.

As a tip, the MODBUS instruction must be executed in every scan, prior to any
read or write instruction. Read and write instructions can be used in
subroutines.

Refer to MODBUS instruction for information about OP1 parameter.

When MODBUSWR is executed with an ON condition, a MODBUS write multiple
registers operation (function code 16) is started as a background operation. A
number of OP3 devices (up to 123), starting at source device OP2 will be
transferred to MODBUS address starting at OP4.

The Ready bit in OP1 indicates that the MODBUS connection is ready for
starting MODBUS Read or Write operations. Is a good practice to check the
status of this bit before starting a MODBUS register Read or Write instruction.
Executing any Read or Write instruction when the Ready bit is OFF is allowed,
but the instruction will not be executed (no error indication), so the user
cannot know if the read or write operation is started.

Updates to status word and error word are performed when the corresponding
MODBUS operation is executed after operation completes. On completion, the
Complete bit or Error bit in OP1 will be set according to the success of the
operation. Please note that the Complete bit will be set only 1 cycle after the
completion of the read or write operation. After this cycle, the MODBUS
instruction will reset automatically the Complete bit.

When MODBUSWR is executed with an OFF condition no operation is
performed.

For more information refer to section 3.5 MODBUS functions.

MODBUSWR

55

3.3.17. Other instructions

CRC16. CRC16 calculation

OP1: Source (Word device)
OP2: Byte count (Word device / Constant)
OP3: Result (Word device)

CRC16
M

o
d

if
ie

rs

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction computes the 16 bit Cyclic
Redundancy Check (CRC16) for the buffer starting at OP1 device. A number of
OP2 bytes will be used for calculation. The result word is stored in OP3 device.

This instruction uses the CRC-16-IBM polynomial (x16 + x15 + x2 + 1) used for
MODBUS CRC calculation.

Data in the source buffer is used according to the status of the 16BIT MODE
special device S24. When S24 is OFF (default) bytes are taken from independent
word devices (first byte from first device, second byte from second device).
When S24 is ON bytes will be taken using the entire word device (first byte from
the lower byte of first device, second byte from the higher byte of first device,
third byte from the lower byte of second device). More information on section
3.3.2. 16 bit instruction mode.

When the execution condition is OFF, no action is performed.

CRC16

56

SCL. Linear scaling

OP1: Source (Word device / Constant)
OP2: Control data (Word device)
OP3: Result (Word device)

SCL

M
o

d
if

ie
rs

UNSIGNED WORD: UÄ

RISING EDGE: ÄP
FALLING EDGE: ÄF

When the execution condition is ON, this instruction converts OP1 source value
into OP3 value according to the specified linear function. SCL is useful for
converting sensor output analog values to a useful technical scale.

The linear function is defined through two points A and B, using OP2 control data
devices:

OP2 As (source for A)

OP2 + 1 Ad (result for A)

OP2 + 2 Bs (source for B)

OP2 + 3 Bd (result for B)

Converting value As will result in value Ad, and converting Bs will result Bb.
When the source value is out of the limits As to Bs, the output will be limited to
Ad or Bd.

When the execution condition is OFF, no action is performed.

SCL

As Bs

Ad

Bd

R

S

57

AVG. Moving average

OP1: Value (Word device / Constant)
OP2: Result buffer (Word device)
OP3: Input control word (Word device / Constant)

AVG

M
o

d
if

ie
rs

UNSIGNED WORD: UÄ

This instruction calculates the moving average for a series of N sample values
(word values). The moving average is a special kind of average that computes
continuously the mean value of the last added N numbers. When the sample
buffer is full and another value is added to the series, the oldest value will be
discarded to accommodate the new value.

OP1 references the word value to add to the series.

OP3 is the input control word for the average. The lower byte of this word
specifies the number of sample values (N) in the series, so the maximum number
of averaged values is 255. The bit 8 of this control word is used to inhibit new
value addition. Whenever this bit is ON, the value OP1 will not be added to the
series.

OP2 references a word device buffer. This buffer is used for storing the average
result (OP2), an output control word (OP2+1) and the last N devices added to the
series (OP2+2 to OP2+2+N-1). A total consecutive 2 + N devices will be used in
this result buffer. Do not modify these devices during instruction execution.

OP2 Result

OP2+1 Output control word

OP2+2 Sample 1

OP2+… . . .

OP2+2+N-1 Sample N

When AVG is executed with an ON condition, the OP1 value will be added to the
series if bit 8 of OP3 is OFF. The average result will be stored in OP2 device.
When the number of sample values reaches N, bit 8 of output control word
(OP2+1) will be set to ON. When the number of sample values is less than N, the
instruction calculates the average based on available sample values. You can use
bit 8 of OP2+1 to know when the average is calculated with the complete series
(N values).

When AVG is executed with an OFF condition, the average will be reset
discarding current sample values.

For example, instruction AVG D0 D100 K5 will put in D100 the average of 5 D0
values adding D0 to the series each execution cycle. Instruction AVG D0 D100
D50 with a value 5 in D50 will be equivalent to the previous instruction, but by
controlling bit D50.8 (with a timer, for example) you can control when to add D0
to the average. Executing the AVG instruction with an OFF condition the average
will be reset.

AVG

58

PID. PID control

OP1: Process variable (Word device)
OP2: First buffer word (Word device)
OP3: Manipulated variable (Word device)

PID
 This instruction executes a PID control loop. A Proportional Integral Differential

controller (PID controller) is a control loop feedback mechanism commonly used
in industrial control systems. This controller attempts to guide the value of the
process variable (PV) near to a setpoint value (SP), modifying continuously the
Manipulated variable (MV).

The PID instruction uses equations commonly used in discrete controllers. You
can select between Type B and Type C general equations through bit Tp of the
control word. The main difference between equations is that C type removes
setpoint from proportional (P) term of the PID sentence. Both equations behave
similarly during normal operation, showing differences only during setpoint
changes. Type C results generally in less overshoot on response due to a large
setpoint step, while type B acts faster on setpoint changes, and so will tend to
overshoot slightly the output.

When driving the PID instruction with an ON condition, the control calculation
happens according to the cadence ts specified in the control area parameter. For
example, consider a ts parameter of 3 ms and a scan time of 2 ms. When the
instruction is first executed, manipulated variable will be calculated. On the
second execution, no calculation will be done since a total time of 2 ms has
elapsed. On the third execution, when elapsed time is 4 ms, another calculation
will be made, and the remaining 1 ms will be added to the count for next time
calculations.

When driving the PID instruction with an OFF condition, no calculation is made
and the PID calculation data will be reset.

OP1 parameter designates the process variable (PV), or the variable you need to
adjust. For example, if you are trying to regulate an oven temperature with a
proportional valve, the process variable (PV) is the acquired temperature. OP3
parameter designates the manipulated variable (MV), or the calculated action for
the control loop, the proportional valve position. Both variables are treated as
signed words (range -32,768 to 32,767).

You can modify the calculated MV variable at any time, before or during PID
operation, so it is possible to limit MV value or change rate. Next PID operation
will be based on new MV value.

OP2 designates the first device of a buffer used to accommodate control words
and other PID calculation data. A total of 32 consecutive word devices will be
used in this area. First part of this buffer contain control constants to configure
the PID operation. You need to set these constants in order to tune your control
loop. Remaining devices are for internal use only. Do not modify these devices
or incorrect PID operation will occur.

You can use any number of PID instructions in your program, but these
instructions cannot share the same OP2 device buffer, unless instructions are not
executed simultaneously.

Continues

PID

59

Continued

This is the list of parameters found in the OP2 control word area:

OP2 SP Process setpoint

OP2+1 ts Sample time

OP2+2 Kp Proportional constant

OP2+3 Ti Integral constant

OP2+4 Td Derivative constant

OP2+5 Klpf Low pass filter constant

OP2+6 Control Control word (see below)

OP2+7 MVmax Max MV value

OP2+8 MVmin Min MV value

OP2+9 Reserved Do not use

OP2+… …

OP2+31 Reserved Do not use

The process setpoint (SP) is the desired value for the process variable (PV). The
control loop will modify the manipulated variable (MV) to guide the PV close to
the SP. You can modify this value at any time.

The sample time (ts) is the time desired between PID calculations, in millisecond
units. When the instruction is driven ON, this time is required to elapse between
MV calculations. This value must be greater than 0. You can change this value at
any time, but new value will be used when a rising edge on the PID instruction
condition is detected, unless you set to ON Rc bit in the control word.

The proportional constant (Kp) defines the strength of the proportional action for
the loop. This constant, divided by 100, is multiplied by the error value (PV – SP)
to obtain the proportional term action. The larger this constant, the greater the
effect of the proportional action. A value of 0 disables proportional action. You
can change this value at any time, but new value will be used when a rising edge
on the PID instruction condition is detected, unless you set to ON Rc bit in the
control word.

The integral constant (Ti) defines the strength of the integral action. This term
integrates the error over time, trying to reset the loop error by adding some
amount to the MV variable as time elapses. This constant is given in 10
milliseconds units. The larger this constant, the weaker the effect of the integral
action. A value greater of 30000 disables integral action. You can change this
value at any time, but new value will be used when a rising edge on the PID
instruction condition is detected, unless you set to ON Rc bit in the control word.

The differential constant (Td) also known as derivative constant defines the
strength of the differential action. This term tries to reset the error by adding
some amount to the MV variable based on the rate change of PV, thus
compensating future errors in the control loop. This constant is given in 10
milliseconds units. The larger this constant, the greater the effect of the
derivative action. A value of 0 disables derivative action. You can change this
value at any time, but new value will be used when a rising edge on the PID
instruction condition is detected, unless you set to ON Rc bit in the control word.

Continues

PID

PID

60

Continued

The low pass filter constant (Klpf) controls the strength of the low pass filter
applied to the process variable (PV) on the derivative term only. This filter tries
to minimize derivative action due to noises in the process variable. The larger
this constant, the greater the effect of the filter. A value of 0 disables the filter.
You can change this value at any time, but new value will be used when a rising
edge on the PID instruction condition is detected, unless you set to ON Rc bit in
the control word.

The control word at OP2 + 6 contains control bits used to configure some
features in the PID action.

Control word b15 … b4 b3 b2 b1 b0

OP2 + 6 Reserved Rc Lm Tp Di

Di (direction bit, bit 0 of control word) sets the direction for the loop. When ON
(1) the reverse action is selected. Reverse action means that the control must
increase MV to increase the process variable (heating type). When OFF (0) the
forward action is selected. Control must increase MV to decrease the process
variable (cooling type).

Tp (equation selection, bit 1 of control word) selects the desired equation. When
ON (1) PID type B is selected. When OFF (0) PID type C is selected. Main
difference between types is found during large changes in the setpoint. Type B
control reaction is fastest, but tends to overshoot. Type C reaction is slower, but
eliminates overshoot.

Lm (limit MV, bit 2 of control word) is used to limit MV values between a
maximum and minimum value. These limits are set in MVmax (OP2+7) and MVmin

(OP2+8) parameters. If no limit is set (Lm to OFF) a minimum value of 0 and a
maximum value of 10,000 will be used and transferred to MVmax (OP2+7) and
MVmin (OP2+8) parameters.

Rc (parameter recalculation, bit 3 of control word) selects the desired behavior
when modifying ts, Kp, Ti, Td and Klpf constants. If Rc is set to ON (1) new constants
will be updated in every instruction execution. If reset to OFF (0) new constants
will be updated only on rising edge of the execution condition.

When trying to tune PID constants for your loop, some kind of experimentation
is required to find a good constant set. This process generally requires a
compromise between control reaction time and loop stability. It is a very good
practice to start with a slow reacting but stable control loop without derivative
action. Once achieved, you can increase Kp and decrease Ti to get a fastest control
loop. Using a Kp of 50, a Ti of 100 and a Td of 0 can be a good starting point in
most cases.

A good knowledge of constant meaning is very important to ease the tuning
process. You can consider proportional action as the responsible of turning the
PV to the SP when the error is big. An only proportional loop will generally put
the PV at a stable point close to the SP, but not at the SP. The integral action will
slowly increase the action to correct this error over time. The derivative action
act quickly to fast changes in the PV due to perturbations. It is not advisable to
use the derivative term to guide normal control because can make your loop very
unstable.

PID

PID

61

3.4. Serial port programming

easyLadder lets you control 3 serial ports for receiving and transmitting serial data. These serial

ports are referenced using a number (1-3):

Port 1 This port is the RS485 included in the RasPICER board. RasPICER board is required to

use this port.

Port 2 This port is the RS232 included in the RasPICER board. RasPICER board is required to

use this port.

Port 3 This port is the ttyAMA0 (serial0) port included in the Raspberry, and use TTL 3V3

level signals. If you want to use this port you must free the linux terminal console

that runs on system startup by default on some linux distributions, and disable boot

information sent to this port. You can do so by editing /etc/inittab and

/boot/cmdline.txt and remove references to the ttyAMA0 (or serial0) port. To use a

different device for this port, see parameters in section 4.2. The easyLadder engine.

 Important note: On Raspberry Pi model 3 B, serial port ttyAMA0 is routed to the

Bluetooth module. The TTL port included in GPIO header is referred as ttyS0 and it is

disabled by default. You can enable this port by editing /boot/config.txt and adding

enable_uart=1 option. Please note that ttyS0 serial port has limited functions. You

can disable the Raspberry internal Bluetooth module to route the complete ttyAMA0

serial port back to the GPIO header, as previous Raspberry models. This procedure is

not included in this manual, but you can easily find information searching in Internet.

Serial receive and transfer is done through RXD and TXD instructions. Before calling these

instructions you must open the target port by setting values to the corresponding PORTn CFG

special device (SD16, SD17 or SD18).

PORTn CFG special devices (SD16, SD17 and SD18) specify configuration data for each port. A

value of 0 in this device closes the port. You have to write a value resulting from adding the

chosen baudrate code and the serial format code as shown in the table below. All values are

Baudrates

Code Baudrate

0x01 110 baud

0x02 300 baud

0x03 600 baud

0x04 1200 baud

0x05 2400 baud

0x06 4800 baud

0x07 9600 baud

0x08 14400 baud

0x09 19200 baud

0x0A 28800 baud

0x0B 38400 baud

0x0C 56000 baud

0x0D 57600 baud

0x0E 115200 baud

Serial format

Code Serial format

0x00 8N1 8 bits, no parity, 1 stop

0x10 8E1 8 bits, even parity, 1 stop

0x20 8O1 8 bits, odd parity, 1 stop

0x30 8S1 8 bits, space parity, 1 stop

0x40 8M1 8 bits, mark parity, 1 stop

0x80 7E1 7 bits, even parity, 1 stop

0x90 7O1 7 bits, odd parity, 1 stop

0xA0 7S1 7 bits, space parity, 1 stop

0xB0 7M1 7 bits, mark parity, 1 stop

0xB0 7N2 7 bits, no parity, 2 stop

0xC0 7E2 7 bits, even parity, 2 stop

0xD0 7O2 7 bits, odd parity, 2 stop

0xE0 7S2 7 bits, space parity, 2 stop

0xF0 7M2 7 bits, mark parity, 2 stop

62

indicated in hexadecimal format because you can simply use first digit to indicate serial format

and second digit to select baudrate:

For example, writing hexadecimal #87 to device SD16 selects 9600 baud, 7 bits, even parity, 1

stop bit for port 1 (RS485 RasPICER port).

Once the port is open, incoming data from this port will be stored in an internal buffer. User has

to read received data from this buffer using the RXD instruction. RXD instruction requires three

parameters OP1, OP2 and OP3. OP1 references the port number. OP2 designates the destination

of the received data and OP3 is the maximum count of bytes to be copied to the destination.

When RXD is executed with an ON condition, available received port data (up to OP3 bytes) will

be copied to OP2 user buffer. After that, SD28, SD29 or SD30 will contain the number of bytes

copied to the user buffer, and the entire receive buffer will be discarded. For example, when

there are 12 bytes available for read and you execute RXD K1 D0 K5, a total of 5 bytes will be

copied to D0 device, SD28 will be set to 5 and all 12 bytes will be removed for the serial buffer.

The byte count parameter OP3 must be less or equal than 1024, because this is the size of the

internal receive buffer.

Data is copied to the user buffer according to the status of the 16BIT MODE special device S24.

When S24 is OFF (default) bytes will be copied to independent word devices (in the above

example, first byte to D0, second byte to D1…). When S24 is ON bytes will be copied using the

entire word device (first byte to the lower byte of D0, second byte to the higher byte of D0,

third byte to the lower byte of D1…). More information on section 3.3.2. 16 bit instruction

mode.

The number of available bytes on the serial buffer can be monitored through special word

devices SD25, SD26 and SD27 (number of available bytes), or bit devices S25, S26 and S27 (any

byte available), depending on the port used. You can call the RXD instruction without data

available, but is a good practice to check the status of S25, S26 and S27 before execution.

Data transfer to the serial port is done using the TXD instruction. TXD instruction requires three

parameters OP1, OP2 and OP3. OP1 references the port number. OP2 designates the source of

the data and OP3 is the count of bytes to be to be transferred to the port.

When TXD is executed with an ON condition, OP3 bytes will be copied from OP2 user buffer to

the internal transmit buffer of the port. The system will transfer these buffer to the physical

serial port as a background operation. When TXD is executed, special bit devices S28, S29 or

S30 (depending on the port used) will be reset to OFF to indicate the internal transmit buffer is

busy (there is some data in the buffer).

The byte count parameter OP3 must be less than 1024, because this is the size of the internal

transmit buffer. Care must be taken when using the TXD instruction to not overflow the internal

transmit buffer. You can avoid this problem by checking that special bit device S28, S29 or S30

is ON before issuing the TXD instruction. These especial bits indicate that the internal transmit

buffer is empty and ready to contain up to 1024 bytes.

Data is copied from the user buffer according to the status of the 16BIT MODE special device

S24. Consider the instruction TXD K1 D0 K10. When S24 is OFF (default) bytes will be copied

from independent word devices (first byte from D0, second byte from D1…). When S24 is ON

bytes will be copied using the entire word device (first byte from the lower byte of D0, second

byte from the higher byte of D0, third byte from the lower byte of D1…). More information on

section 3.3.2. 16 bit instruction mode.

63

Look at the following example:

This code is a simple example to implement a basic message interchange between easyLadder

and an external serial device. This program uses port 1 to send a message every second and

then receives the response. Code at subroutines P0 and P1 is deliberately omitted.

The first line of code configures port 1 to 9600 baud 8N1 on first execution cycle.

On rising edge of S5 oscillator (rising edge occurs every 1 second) and serial port ready to

transmit data (S28) the RXD instruction with a byte count of 0 is called. This instruction does

not receive any data, just clears the receive buffer to start over for a new message response.

This is a good practice because it clears any data received after the last message and before

sending new message, decreasing possible faults due to unexpectedly long message

responses. After that, subroutine P0 is called to fill message data in D100. Instruction TXD sends

this data (10 bytes long) to the serial port. Bit W0 is set to signal that we have sent a message.

When bit W0 is ON (message sent) and at least 5 bytes are received from the serial device (SD25

>= 5), we can receive the data with the RXD instruction and process the message in the P1

subroutine. Bit W0 is reset to indicate receipt of the message.

S2

SD25 K5

RXD K1 D0 K5

CALL P1

RST W0

LD S2

MOV #7 SD16

LDP S5

AND S28

RXD K1 D0 K0

CALL P0

TXD K1 D100 K10

SET W0

LD W0

AND>= SD25 K5

RXD K1 D0 K5

CALL P1

RST W0

INSTRUCTION LIST

MOV #7 SD16

S5

1st cycle

1 sec

RXD K1 D0 K0

CALL P0

TXD K1 D100 K10

SET W0

W0

>=

S28

TX1 READY

64

3.5. MODBUS TCP/IP functions

easyLadder (from version 1.4) includes several MODBUS TCP/IP server/client capabilities,

permitting easy communication with other standard MODBUS TCP/IP devices. These

capabilities include an embedded MODBUS TCP/IP server and convenient MODBUS TCP/IP

client instructions, covering any MODBUS connection scenario.

Using the embedded MODBUS TCP/IP server it is possible to read and write easyLadder devices

from external machines, like HMIs (Human-Machine Interfaces), PCs (Personal Computers) and

other easyLadder machines.

Using the included MODBUS TCP/IP client instructions you can begin connections to industrial

MODBUS devices like distributed IO systems, PLCs, other easyLadder machines and so on.

3.5.1. MODBUS TCP/IP server

The MODBUS TCP/IP server allows sharing device data with standard MODBUS TCP/IP devices

like HMIs, Pcs or other easyLadder machines, for example.

This server listens to TCP port 502 (MODBUS standard), waiting connections from external

machines. Up to 64 simultaneous connections are supported.

Starting from version 1.7, you can restrict connections to the MODBUS TCP/IP server to only a

number of allowed IP ranges. Using this feature it is possible to protect the PLC engine from

unwanted remote accesses. See section 5.8.5. TCP/IP security for details.

Standard MODBUS data model divides sharing registers into four kinds:

Á Discrete Inputs (read only bit memory)

Á Coils (read/write bit memory)

Á Input registers (read only word memory)

Á Holding registers (read/write word memory)

The entire easyLadder memory is shared through the MODBUS TCP/IP server. This MODBUS

implementation makes no difference between Discrete Inputs and Coils (bit memory) and

between Input Registers and Holding Registers (word memory). Nevertheless, bit memory and

word memory uses a fully isolated addressing, meaning that easyLadder bit devices (W, H, X,

Y…) are addressed through MODBUS bit addresses (Discrete Inputs or Coils) and easyLadder

word devices (D, AX, AY…) are addressed through MODBUS word addresses (Input Registers or

Holding Registers).

The MODBUS TCP/IP server implements MODBUS data access functions 02 (Read Discrete

Inputs), 01 (Read Coils), 05 (Write Single Coil), 15 (Write Multiple Coils), 04 (Read Input

Register), 03 (Read Holding Registers), 06 (Write Single Register) and 16 (Write Multiple

Registers).

65

The following tables illustrates the MODBUS memory mapping:

Bit devices (access through Discrete Inputs or Coils MODBUS memory)

Memory area First MODBUS

address

Devices Usage

W 0 10000 Work bits

H 10000 10000 Retentive work bits

X 20000 512 Digital inputs

Y 25000 512 Digital outputs

T (TC) 30000 256 Timer contact (100 ms precision)

TH (THC) 35000 256 Timer contact (10 ms precision)

C (CC) 40000 256 Counter contact

S 45000 256 Special bit devices

Word devices (access through Input Registers or Holding Registers MODBUS memory)

Memory area First MODBUS
address

Devices Usage

D 0 10000 User data devices

AX 10000 256 Analog inputs

AY 15000 256 Analog outputs

T (TD) 20000 256 Timer count value (100 ms precision)

TH (THD) 25000 256 Timer count value (10 ms precision)

C (CD) 30000 256 Counter value

SD 35000 32 Special word devices

66

3.5.2. MODBUS TCP/IP client instructions

The included MODBUS TCP/IP client instructions give the power to connect to industrial

MODBUS devices like distributed IO systems, PLCs, other easyLadder machines and so on.

The MODBUS TCP/IP client connection is managed through the MODBUS instruction. This

instruction is used to configure and connect to a MODBUS TCP/IP device.

The MODBUS instruction requires one parameter OP1. This parameter OP1 designates the first

device of a buffer used to configure and reference the MODBUS connection. A total of 8

consecutive word devices will be used in this area. You need to set these parameters before

instruction execution.

OP1 Status MODBUS connection status

OP1+1 Error MODBUS connection error

OP1+2 IP1 First byte of peer IP address

OP1+3 IP2 Second byte of peer IP address

OP1+4 IP3 Third byte of peer IP address

OP1+5 IP4 Forth byte of peer IP address

OP1+6 TCP port TCP port (usually 502)

OP1+7 Unit MODBUS destination unit

Word device OP1 contains the Status of the MODBUS connection. This word is a mask of several

bits according to the following table:

Bit 0 [OP1].0 Ready MODBUS connection ready

Bit 1 [OP1].1 Complete MODBUS transfer complete

Bit 2 [OP1].2 Error MODBUS error detected

 …

Bit 6 [OP1].6 Enabled MODBUS connection enabled

Bit 7 [OP1].7 Connected Connected to the MODBUS device

You can use up to 64 MODBUS instructions to connect to up to 64 MODBUS devices. These

instructions cannot share the same OP1 device buffer, just because this OP1 device is used to

reference the MODBUS connection in other MODBUS related instructions.

When the MODBUS instruction is executed (with an ON or OFF condition), value of Status (OP1)

and Error (OP1+1) words are refreshed according to the status of the MODBUS connection. The

Ready bit indicates that the MODBUS connection is ready for starting MODBUS Read or Write

operations. Is a good practice to check the status of this bit before starting a MODBUS register

Read or Write instruction.

67

MODBUS read and write operations are performed as a background process. When any MODBUS

read or write operation is complete and the MODBUS instruction is executed, the Complete bit

or Error bit will be set according to the success of the operation. On MODBUS read operations,

destination devices will be refreshed only when the MODBUS instruction is executed. Please

note that the Complete bit will be set only 1 cycle after the completion of the read or write

operation. After this cycle, the MODBUS instruction will reset automatically the Complete bit.

When any error is detected during connection, read or write operation, the Error bit (OP1.2) will

be set and the Error word (OP1+1) will contain information about this error. The following table

contains possible error values:

0 No error

1 MODBUS exception 1 (illegal function)

2 MODBUS exception 2 (illegal data address)

3 MODBUS exception 3 (illegal data value)

4 MODBUS exception 4 (slave device failure)

5 MODBUS exception 5 (acknowledge)

6 MODBUS exception 6 (slave device busy)

8 MODBUS exception 8 (memory parity error)

10 MODBUS exception 10 (gateway path unavailable)

11 MODBUS exception 11 (gateway target failed to respond)

20 Timeout contacting MODBUS device

21 Frame error from MODBUS device

22 Unable to connect to MODBUS device

23 No free connections (more than 64 MODBUS instructions)

24 R/W operation without matching MODBUS instruction

25 Exceeded max R/W devices in MODBUS Read/Write

When MODBUS instruction is executed with an ON condition, easyLadder will try to connect to

the device using the IP / port specified in the OP1 area. When connection is lost or unsuccessful,

easyLadder will retry the connection indefinitely. During instruction execution, IP address and

port can be modified, but new values will be used only when an OFF to ON condition is detected

in the MODBUS instruction.

When MODBUS instruction is executed with an OFF condition, easyLadder will close the

connection to the MODBUS device.

Once the MODBUS instruction opens the connection with the external device, and the Ready

bit of OP1 device (Bit 0) is ON indicating connection ready, you can issue any of the MODBUS

read or write instruction. Is a good practice to check the status of this bit before starting a

MODBUS register Read or Write instruction. Executing any Read or Write instruction when the

Ready bit is OFF is allowed, but the instruction will not be executed (no error indication), so the

user cannot know if the read or write operation is started.

68

The MODBUS instruction must be executed in every scan (with an ON or OFF condition), prior to

any read or write instruction. By the other way, read and write instructions can be used in

subroutines.

Updates to status word, error word and destination devices are performed when the

corresponding MODBUS instruction is executed after operation completes. On completion, the

Complete bit or Error bit in OP1 will be set according to the success of the operation. Please

note that the Complete bit will be set only 1 cycle after the completion of the read or write

operation. After this cycle, the MODBUS instruction will reset automatically the Complete bit.

Available MODBUS read and write instructions are:

Instruction Function

MODBUSRDI Read Discrete Inputs

MODBUSRC Read Coils

MODBUSRIR Read Input Registers

MODBUSRHR Read Holding Registers

MODBUSWC Write Coils

MODBUSWR Write Registers

These instructions are used to transfer bit devices or word devices to or from the connected

MODBUS server. Please refer to the above instruction reference to obtain details about these

instructions.

The following example illustrates a basic method to write devices D100-D104 to the holding

registers addresses 50-54, and read discrete inputs 1-10 to devices W100-W109. The MODBUS

device is found at address 192.168.10.2, port 502, unit 1.

69

S2

MOV K1 D7

MODBUS D0

RST W0

LD S2

MOV K192 D2

MOV K168 D3

MOV K10 D4

MOV K2 D5

MOV K502 D6

MOV K1 D7

LD S1

MODBUS D0

LD D0.0

AND W0

MODBUSWR D0 D100 K5 K50

RST W0

LD D0.0

ANDI W0

MODBUSRDI D0 K1 K10 W100

SET W0

INSTRUCTION LIST

MOV K192 D2

1st cycle

MOV K168 D3

MOV K2 D5

MOV K502 D6

MOV K10 D4

S1

ON

D0.0

READY

D0.0

READY

W0

W0

SET W0

MODBUSWR D0 D100 K5 K50

MODBUSRDI D0 K1 K10 W100

70

In the above example, we are using D0 as the MODBUS configuration buffer. In the first scan

(S2) the configuration data buffer is filled with the IP address, port number and Unit.

The MODBUS instruction is then executed in every scan, creating the connection to the MODBUS

device.

Once the connection is ready for read and write operations, bit D0.0 (Ready bit) will be set to

ON. When this happens, we use bit W0 to select between read and write operation. If W0 is set,

the MODBUSWR (MODBUS write register) instruction is executed, writing 5 registers starting

from D100 to the MODBUS address 50. Then, the W0 bit is reset to OFF, so the next operation

will be the other read operation.

When operation completes, bit D0.0 (Ready bit) will be set to ON again. If W0 is OFF, the

MODBUSRDI (MODBUS Read Discrete Input) instruction is executed, reading 10 registers

starting from MODBUS address 1 and storing values to devices W100 to W109. Then, the W0

bit is set to ON, so the next operation will be again the write operation.

Please note that when any MODBUS read or write instruction is executed, the Ready bit (D0.0

in this case), will be immediately reset to OFF, indicating that the operation is in progress.

71

3.6. RasPICER, GPIO and I2C expanders I/O allocation

The RasPICER board provides a set of inputs and outputs with fixed device mapping. Even if

you are not using this board, you must respect this device reservation.

Assigned devices for the RasPICER board are found in the following table:

Devices Description

X0 – X7 Digital inputs

Y0 – Y3 Digital outputs (transistor outputs)

Y4 – Y7 Digital outputs (relay outputs)

AX0 – AX1 Analog inputs (0…20 mA)

AY0 – AY1 Analog outputs (0…20 mA)

Raspberry Pi provides a number or input and output pins in the GPIO connector. These GPIO

ports can be used to expand your available digital IOs for the easyLadder PLC. Please note that

these ports use 3V3 level signals, so it must require generally some kind of signal conditioning

to interact with outer systems.

You can allocate X and Y PLC devices to the ports using easyLadder studio software. In order to

configure easyLadder for your expansion modules, refer to section 5.8. PLC configuration.

In the following image you can view the list of available GPIOs for device assignment. All pins

are configurable as output or input (with or without pullup and pulldown resistors). GPIO7,

GPIO8, GPIO9, GPIO10 and GPIO11 are used for SPI communication. You cannot use these pins

if the RasPICER board is present or you need to use the SPI port.

 1 2

 3 4

 5 6

GPIO4 7 8

 9 10

GPIO17 11 12 GPIO18

GPIO27 13 14

GPIO22 15 16 GPIO23

 17 18 GPIO24

(SPI) GPIO10 19 20

(SPI) GPIO9 21 22 GPIO25

(SPI) GPIO11 23 24 GPIO8 (SPI)

 25 26 GPIO7 (SPI)

 27 28

GPIO5 29 30

GPIO6 31 32 GPIO12

GPIO13 33 34

GPIO19 35 36 GPIO16

GPIO26 37 38 GPIO20

 39 40 GPIO21

72

Additionally, you can provide other I/Os to your system, by using up to 32 external I2C I/O port

expanders. Raspberry Pi includes an I2C serial port in the GPIO header. There are a number of

Raspberry HAT boards in the market including I2C devices. These devices are connected to the

Raspberry I2C bus and can provide a number of 8 or 16 I/O ports per device.

You can allocate X and Y PLC devices to these expanders using easyLadder studio software. In

order to configure easyLadder for your expanders, refer to section 5.8. PLC configuration.

3.7. Extension I/O units

In addition to the inputs and outputs provided by the RasPICER board and the GPIO ports on the

Raspberry Pi, you can use Ethernet extension modules to expand your system I/O capabilities.

You can connect up to 32 Ethernet I/O modules. At this moment easyLadder PLC supports

Ethernet modules from SHJ Electronic Co, Ltd. (http://www.shjelectronic.com). We selected

these modules due to the high quality / cost ratio. Other brands may be supported in a near

future.

Currently available SHJ Electronic modules are:

Á S6301 (8 Digital In, 8 Digital Out)

Á S6302 (16 Digital In)

Á S6303 (16 Digital Out)

Á S6305 (5 Power Relay Out)

Á S6316 (16 Relay Out)

Á S6116 (16 Analog In - 12 bit ADC)

Á S6216 (16 Analog In - 16 bit ADC)

Modules must be properly configured before use on easyLadder. Configuration requires the

UDP server mode, responding to UDP port 502 (MODBUS). Additionally you must configure IP

parameters (IP address, Subnet mask and Gateway) according to your network.

You can allocate input and output devices for each module using easyLadder studio software.

In order to configure easyLadder for your expansion modules, refer to section 5.8. PLC

configuration.

The system behavior under extension module failure can be configured. You can select whether

to STOP the PLC when any module stops responding. Module communication failure can be

monitored through special SD devices:

SD20 EXTERR0 Extension module error bitmask (modules 1-16)

SD21 EXTERR1 Extension module error bitmask (modules 17-32)

These devices contain the error bit mask for all extension units. A value of 1 in the

corresponding bit indicates that module is not responding to queries. SD20 contains error bits

for modules 1 to 16, and SD21 for modules 17 to 32.

73

3.8. PLC errors

easyLadder can detect many error conditions. Depending on the error severity (fatal error or

warning), the PLC will switch to STOP mode, requiring a manual RUN or clear error command to

restart normal operation.

You can monitor the error status of your PLC using the easyLadder studio software. Refer to

section 5.6. Online operation for more details.

This is the list of available errors:

Error Description STOP

Instruction error An invalid (unknown) instruction was found. YES

FOR / NEXT error Invalid FOR and NEXT nesting YES

FOR without NEXT A NEXT not found for the a FOR instruction YES

No END instruction The program finished without an END instruction YES

Program pointer Used program pointer (Pn) is not found YES

Call stack error RET instruction not found or exceeded CALL nestings YES

Hardware IO error Error contacting RasPICER board YES

Scan time too long
Instruction watchdog error. Executed instructions in

the scan exceeds the configured watchdog value.
YES

Invalid CRC Program is corrupted YES

Extension module Extension module not responding Configurable

I2C expander I2C I/O expander not responding Configurable

Device out of range
An instruction parameter contains a reference to a

device out of range.
NO

74

4. RASPBERRY PI SOFTWARE

4.1. Installing easyLadder

If your Raspberry Pi has connection to the Internet, you can download our software installer to

ease the entire process. To get the installer, open a local terminal or a remote SSH session to

your Raspberry and type the following commands:

The installer will query for your desired configuration and download the required files. Files

will be installed in /opt/effesoftware.

All files are compiled for the RASPBIAN JESSIE, our preferred Linux distribution. Please contact

us if you want to use other Linux distribution.

If your Raspberry is not connected to the Internet, or you want to do a manual setup, you can

download the PLC engine pack with all files and sample source code from:

http://www.ferrariehijos.com/easyLadder

Copy the downloaded easyladderX.tar (X is 1 or 2 depending on your raspberry model) file to

your home directory, and open a local terminal or a remote SSH session to your Raspberry and

type the following commands (do not copy bold commands, are only for help):

This procedure will copy the software package to /opt/effesoftware directory and will run

easyLadder engine as a daemon, so it will be automatically loaded on system startup.

cd

wget http://www.ferrariehijos.com/easyladdersetup

chmod +x easyladdersetup

sudo ./easyladdersetup

sudo sh

cd

tar -xvf easyladderX.tar -C /opt (replace X with 1 or 2)

cp /opt/effesoftware/easyladderd /etc/init.d/easyladderd (with RasPICER board, or)

cp /opt/effesoftware/easyladderdn /etc/init.d/easyladderd (without RasPICER board)

update-rc.d easyladderd defaults

service easyladderd start

exit

http://www.ferrariehijos.com/

75

4.2. The easyLadder engine

The PLC engine is managed through the easyLadder program. When using the easyladdersetup

installer, this file is trasferred to the /opt/effesoftware directory.

easyLadder uses the plcdata directory (found in the /opt/effesoftware/plcdata by default) to

store PLC program files, retentive device files and engine log file. Sometimes it is very useful

to view the engine log file to monitor system working. You can find this log file in the plcdata

directory, /opt/effesoftware/plcdata/easyladder.log by default.

Normally, the easyLadder program is loaded as an init.d service (daemon) during system startup.

This is done using the easyladderd script found at /etc/init.d directory. You can also run the

engine manually by executing easyLadder directly with superuser privileges (using sudo

command, for example).

You can start or stop manually the PLC engine service using:

When using the RasPICER board with the watchdog function active, a PLC engine stop can result

in a system poweroff due to a watchdog timeout. Disable the watchdog before stopping using

/opt/effesoftware/raspicer -w0 command or doing three power button presses on the

RasPICER board. The watchdog LED indicator in the RasPICER board will blink when watchdog

is temporally disabled.

IMPORTANT NOTE: If using the RasPICER board, do not load the raspicer daemon (raspicerd

init.d script). The easyLadder PLC engine includes his own daemon, replacing the general

raspicer daemon. This daemon lets you to access every RasPICER feature and additionally gives

control of the embedded PLC variables (devices). You can use the raspicer utility to control the

board, but do not execute it with the --startdaemon option.

The easyLadder program can be executed using parameters. When using the init.d script to run

the engine, you can set parameters by editing /etc/init.d/easyladderd script and modifying

DAEMON_ARGS variable at the start of the file. Available command line parameters are:

Usage: easyladder [option ...]

-v, --verbose When using this option, engine log messages are directed to stdout,

in addition to the log file. This option is useful for debug purposes.

-n, --noraspicer Disable RasPICER board support. Use this option when not using the

RasPICER board, otherwise engine will shutdown with an unable to

contact the RasPICER board error message.

-l KEY, --license KEY This option is used to register easyLadder. This license key is

generated using the system key for your system. The system key is

shown in the log file during engine startup. More information about

registering is found at http://www.ferrariehijos.com/easyLadder.

Without license, easyLadder engine will run without limitations for

a period of 15 minutes. After this time, the engine will be placed in

STOP mode, requiring a manual RUN command to start it again.

sudo service easyladderd start

-or-

sudo service easyladderd stop

http://www.ferrariehijos.com/easyLadder

76

-s DEV, --serial DEV Use this option to specify device used for serial Port 3. This device

is /dev/serial0 by default.

-d DIR, --basedir DIR Use this option to specify the location of the plcdata directory,

where program, data, configuration and log files are stored. By

default, when this parameter is not present, the plcdata is located in

the easyLadder executable directory. Set this parameter if you need

to store writable data in other location.

-h, --help Shows command line help information.

4.3. The raspicer utility

The raspicer utility is provided as a part of the easyLadder and the RasPICER board software

packages. This is a command line utility used to control features of the RasPICER board, such as

monitor the status of the board, set outputs, adjust clock and configure hardware values, but

also to control the PLC engine through the command line.

IMPORTANT NOTE: If using the RasPICER board, do not load the raspicer daemon (raspicerd

init.d script). The easyLadder PLC engine includes his own daemon, replacing the general

raspicer daemon. This daemon lets you to access every RasPICER feature and additionally gives

control of the embedded PLC variables (devices). You can use the raspicer utility to control the

board, but do not execute it with the --startdaemon option.

The available command line parameters for the raspicer utility are:

Usage: raspicer [option ...]

General options:

-s, --status Displays board I/O or PLC status information. RasPICER required.

-q, --quiet Runs raspicer in quiet mode. No text is displayed.

-h, --help Shows command line help information.

-w0, --watchdog0 Disables RasPICER shutdown due to watchdog timeout. When the

watchdog is active and you need to stop the control application or

daemon, you can temporarily disable the watchdog engine by using

this command. When the watchdog is temporarily disabled the

watchdog LED will blink. You can reactivate the watchdog issuing

the –w1 command. Refer to section 3.11. Power manager (RasPICER

user manual) for more information. RasPICER required.

-w1, --watchdog1 Re-enables RasPICER shutdown due to watchdog timeout. Refer to

section 3.11. Power manager (RasPICER user manual) for more

information. RasPICER required.

-r, --reloadwd Reloads RasPICER special watchdog counter. Refer to section 3.11.

Power manager (RasPICER user manual) for more information.

RasPICER required.

-p PAR, --powerctrl PAR Sets RasPICER power control options. Do not use with easyLadder.

-c, --viewconfig Displays RasPICER flash configuration parameters. See parameters

bellow. RasPICER required.

77

-f CFG, --setconfig CFG Sets RasPICER flash configuration parameters. New parameters are

saved to flash memory. RasPICER required.

 Use '--setconfig parameter1=value1,parameter2=value2, ...' format.

 Valid parameters are:

 DisableAutoPowerOn (0-1). This parameter configures the RasPICER

board to power the Raspberry when external VDC power is applied

to the terminals (AUTO POWER ON power manager function). A value

of 1 disables the function.

 DisableAutoPowerOff (0-1). This parameter configures the

RasPICER to remove power to the Raspberry when the poweroff

state is detected (AUTO POWER OFF power manager function). A

value of 1 disables the function.

 DisableWatchdog (0-1). This parameter configures the RasPICER to

remove power to the Raspberry when a watchdog timeout occurs

(WATCHDOG power manager function). A value of 1 disables the

function.

 UseWatchdogCommand (0-1). This parameter configures the

preferred method to reload the watchdog. Using a value of 0, any SPI

command reloads the watchdog. Using a value of 1, the special

watchdog reload command is required.

 StartupTime (0-65535). This parameter specifies the time (in 100

ms units) needed for the Raspberry Pi system to start, thus the

maximum time after a power up required to issue the first watchdog

reload. If no watchdog reload occurs passed this time from the

power up, the system will restart. This time must be set according to

your system, depending on the time required to launch your control

application or daemon.

 WatchdogTime (0-65535). This parameter specifies the maximum

time (in 100 ms units) required between watchdog reloads, after the

first (startup) reload. If no watchdog reload occurs passed this time,

the system will restart.

 InputFilter (0-255). This parameter specifies the time filter value (in

1,54 ms units) for digital inputs.

 CalibOutCurrent0 and CalibOutCurrent1 (0-65535). These

parameters are used to calibrate analog current outputs AY0 and

AY1. In order to calibrate the outputs, set the analog output to

generate 20 mA. Increasing the parameter decreases the output

current.

 CalibInCurrent0 and CalibInCurrent1 (0-65535). These parameters

are used to calibrate analog current inputs AX0 and AX1. In order to

calibrate the inputs, connect a 20mA analog source to the input.

Increasing the parameter decreases the read current.

--startdaemon Starts RasPICER controller daemon. Do not use with easyLadder.

--stopdaemon Stops RasPICER controller daemon. Do not use with easyLadder.

78

RasPICER I/O options:

--yN VAL Set value for RasPICER board digital output N. Do not use with

easyLadder. Use --plcsetbit parameter instead.

--ayN VAL Set value for RasPICER board analog output N. Do not use with

easyLadder. Use --plcsetword parameter instead.

--rcxN Reset counter value for RasPICER board digital input N. Do not use

with easyLadder.

-d VAL, --do VAL Sets value for entire RasPICER board digital output. Do not use with

easyLadder. Use --plcsetbit parameter instead.

RasPICER RTC options:

-v, --viewrtc View current clock from RasPICER RTC. RasPICER required.

-g, --getrtc Transfer RasPICER RTC to system clock. RasPICER required.

-t, --setrtc Transfer system clock to RasPICER RTC. RasPICER required.

-y, --syncrtc Automatic RTC synchronization. This function is always ON with

easyLadder. Do not use.

easyLadder options (a running easyLadder PLC engine is required):

--plcrun Places easyLadder PLC in RUN mode.

--plcstop Places easyLadder PLC in STOP mode.

--plcsetbit PAR Sets PLC bit device value.

 Use '--plcsetbit Device1=Value1,Device2=Value2, ...' format.

--plcsetword PAR Sets PLC word device value.

 Use '--plcsetword Device1=Value1,Device2=Value2, ...' format.

--plcgetbit PAR Gets PLC bit device value.

 Use '--plcgetbit Device1,Device2, ...' format.

--plcgetword PAR Gets PLC word device value.

 Use '--plcgetword Device1,Device2, ...' format.

--unblocktcpip Disables PLC TCP/IP security. When you restricted the allowed

incoming TCP/IP addresses for easyLadder Studio, and the

easyLadder engine is no longer accessible, you can execute this

option, so the TCP/IP security will be disabled.

79

4.4. Optimizing the PLC engine.

When using multicore processors (Raspberry Pi2 and Pi3), the PLC engine performance can be

optimized using CPU isolation. You can isolate a single CPU for the PLC engine only.

It is possible to configure your Linux system to isolate one CPU during boot. When this is done,

the system will not assign processes to this core. easyLadder lets you select which CPU are

assigned to the PLC engine thread, so selecting ONLY the isolated core in the PLC parameter

dialog (section 5.8.1), the PLC engine will boost performance being the unique process for the

CPU and, additionally, you will obtain a more constant scan cycle time.

The PLC engine is single threaded, so you will not obtain more performance by isolating more

than one core.

In order to isolate the CPU for the PLC engine, you must edit /boot/cmdline.txt file in your

Raspberry Pi and add at the end of the root= line the sentence isolcpus=3. This way CPU3 will

be reserved for the PLC engine. This setting will be effective after a system reboot.

Once the CPU is isolated in the Linux kernel, you can select ONLY this CPU in the PLC parameter

dialog (section 5.8.1).

80

5. EASYLADDER STUDIO PROGRAMMING SOFTWARE

5.1. Introduction

easyLadder studio is a powerful but lightweight ladder editor for the easyLadder PLC. With this

application you can easily manage your PLC programs using an easy to use graphical

environment.

With easyLadder studio you can:

Á Write your PLC program.

Á Transfer the program to the PLC using a network connection or export program files to copy

manually to the Raspberry Pi.

Á Read program currently running on the PLC

Á Protect your PLC program with password

Á Monitor and modify PLC device values in real time

Á Modify a part of the program and transfer changes without stopping control (Online edit)

Á Assign comments and descriptions to used PLC devices to ease program readability

Á Divide the program in sections to ease program readability

Á Assign input and output devices to external expansion modules, GPIOs and I2C expanders

Á Configure running parameters for the PLC

Starting from version 1.7, you can restrict remote connections to the PLC to only a number of

allowed IP ranges. Using this feature is possible to protect the PLC engine from unwanted

remote accesses. See section 5.8.5. TCP/IP security for details.

5.2. Installing easyLadder studio

easyLadder is designed for Microsoft Windows. Windows XP, Vista, 7, 8, 8.1 and 10 are

supported.

You can download easyLadder installer at http://www.ferrariehijos.com/easyLadder.

Installation process is straightforward. Simply execute the installer and follow on-screen

indications. Setup program will create shortcuts for calling easyLadder studio.

http://www.ferrariehijos.com/easyLadder

81

5.3. easyLadder studio overview

This section provides basic information about software features. Some kind of general

knowledge about Microsoft Windows applications is required before using this software.

Concepts as project saving and loading will not be covered in this guide.

Main easyLadder studio window is divided into several areas:

Á Editor view (Pos. 1). This window is used to view and modify the PLC program. Each section

is shown in a different tab. You can switch between open sections by pressing the

corresponding tab.

Á Project view (Pos. 2). This tree view contains the section list for your program and

configuration parameters.

Á Device comment view (Pos. 3). This view contains comments for the PLC devices. You can

assign a friendly name and a description for your used devices. Comments for system

devices (S, SD) are automatically assigned when creating a new project. Device comments

are arranged into groups to facilitate device management. You can create your own device

group by right clicking device group window.

Á Results view (Pos. 4). This view contains two tabs: Device monitor tab and compile results

tab. Using device monitor tab you can monitor your desired PLC devices in real time. This

tab contains the list of devices to monitor during online sessions. You can add or remove

devices to this tab. Compile results tabs is filled with errors and warnings during program

compilation.

1

2

3

4

82

5.4. Writing your program

An easyLadder program is a set of instructions ended with an END instruction. As noted in

section 3.1. Introduction to ladder programming, the scan cycle is finished when an END or

FEND instruction is executed. When you need to include subroutine code that it is not executed

in the main scan cycle, you need to put a FEND instruction at the end of the main scan code.

After this FEND you can place every subroutine code and, at the end of all the code, you place

the END instruction.

To ease program reading, you can divide your program in sections. Sections are parts of code

with a customizable name. These parts are joined together in the order specified in the project

view tree to form the entire program. Sections have no influence on the easyLadder PLC engine

function. Sections are only provided for program organization.

When you start with a blank project, the framework will create two sections. A blank section

and a section named End. The End section, as the name suggests, includes only the END

instruction. You are free to delete, rename or modify this section.

Program sections are shown in the Project view. You can view, add, delete, rename, move up

and move down any section using the context menu. Right click the section tree to open the

context menu.

The ladder program is composed by contact instructions and coil instructions. Contact

instructions form a logic block to command a number of coil instructions. Each logic block with

their corresponding coil instructions is called network. A section can contain any number of

networks.

The editor space is divided in cells. Instructions are placed in these cells. Each instruction can

use one or more cells depending on the instruction size.

Edit mode. In order to modify your program, easyLadder must be set to Edit mode.

When this mode is not selected, any modification of the program is forbidden. You can

enable or disable this mode using the Edit menu or clicking the Edit mode button in the

toolbar.

Cell edition. When the editor is in edit mode, you can place instructions by selecting

the destination cell and using the toolbar shortcuts provided. Also you can edit any cell

by double clicking it. When editing the cell, a cell edition dialog will appear. Using this

dialog you can choice the desired base instruction and select modifiers for the

instruction. You can also enter instruction code directly.

83

Signal wires. Once your logic block is ready, you need to wire signals between ladder

cells. The most practical way is to use the Draw wire / wire delete mode by selecting

the icon shown at the left. This mode lets you to draw wires using the mouse. To draw

or delete a wire you must click at the start point of the wire and release the click at

the end of the wire. A sample wire will be shown while dragging. You can also use

single horizontal wire and vertical wire icons in the toolbar. All commands are

accessible from the Edit menu.

Network comments. The editor allows network comments. These comments are shown

at the top of the network and gives information about the network to increase program

readability. To place a network comment you must select any cell in the network and

click the network comment toolbar icon. A popup window with the network comment

will be shown.

Program compile. When you add or modify any network in your program, the editor will

show this network using a different background color to indicate that this network was

modified. After any change, the resulting network must be compiled to check for errors

and translate to PLC code. Compilation is made through the Compile button in the

toolbar, the Edit menu or using the context menu shown right clicking the editor. You

can also undo the changes before compile using the menu. If any error is detected

during code compilation a popup window will indicate the source of the error.

Additionally, the compile results tab will show additional information about

compilation process.

5.5. Device comments

easyLadder supports device comments. Device comments are useful to ease program

interpretation. Any PLC device can have a name and a comment. This name is shown on the

ladder editor in addition to the PLC device name.

Device comments are arranged in groups. You can create several groups and include any

number of comments in each group.

The device comment view lets you manage these comments. At the top of this view is the device

group tree. By clicking a device group, you can view all devices in that group at the bottom of

the view. Right clicking the tree you can add, remove or rename the group through the context

menu.

In order to add a device comment to a group, you can select the group from the tree and right

click the bottom list to popup the context menu. Also, you can use the add icon located at the

top of the view.

Comments for system devices (S, SD) are automatically assigned when creating a new project.

Device comments can be transferred to the PLC, if needed. This way these device comments

will be recovered when getting the program from the PLC.

84

5.6. Online operation

easyLadder studio can connect to the PLC through the network connection. Acting this way it is

possible to transfer the program to or from the PLC, monitor device data, change PLC mode to

RUN or STOP and view status of the PLC.

Online mode. You can switch to online mode pressing the icon shown at the left or

using the main menu. In this mode, easyLadder studio connects to the PLC through the

network connection to monitor PLC devices. The editor window will display status and

values for all devices in your code. Additionally, you can use the device monitor tab to

monitor other devices. You can change device values by right clicking any device in the

editor window and selecting the corresponding option from the context menu.

Online edit. When easyLadder studio is in online mode, you can switch to online edit

mode by clicking the edit mode button. When both online and edit modes are active,

the system enters the Online edit mode. In this mode, any change to the program will

be transferred to the PLC during compile. The PLC will not be switched to STOP mode

and program will continue with the new code. A red background in editor windows

indicates this mode.

Care must be taken when using this mode with pulsed instruction or contacts. New

network code with pulse conditions will be executed (in the first cycle after modify)

considering that last executing condition was OFF.

Before entering Online edit mode, easyLadder studio will compare editor program with

the program on the PLC. When programs are not exactly the same, Online edit mode

will not be activated.

Connection setup. The first time you use any online option, a connection dialog will

appear. You can also access to this dialog by clicking the icon shown at the left or

selecting the option in the main menu. You must enter the IP of the easyLadder PLC in

the PLC address field.

For your convenience, easyLadder attempts an automatic detection of any easyLadder

PLCs in your local network. The bottom list includes detected PLCs in your network. You

can click any detected PLC to use its IP address.

85

PLC status. This option is used to monitor status of the PLC. You can view current PLC

mode (RUN, STOP), system clock, PLC errors and other status related to the RasPICER

board, if present.

At the bottom of the dialog you can find the error list. Errors in this list can be active

errors or inactive errors. Active errors represent error conditions not yet solved.

Inactive errors signify the past error history, or failures not currently present in the

system. When switching from STOP to RUN mode the system will try to clear existing

errors, but these errors will remain as inactive until a system shutdown or a manual

clear error command in used.

Write to PLC. Using this command you can transfer your program to the PLC. When

executing the command, you can specify which areas you want to transfer (program

memory, parameter data or device comments).

WARNING: When writing the program memory, the PLC must be switched to STOP mode.

Verify that is safe to STOP the control before issuing the write.

Read from PLC. Using this command you can transfer the current PLC program to

easyLadder studio. When executing the command, you can specify which areas you

want to transfer (program memory, parameter data or device comments). If the PLC

program is protected by password, you must enter this password before data transfer.

Switch to RUN mode. You can remotely place the PLC in RUN mode using this button.

When PLC is in RUN mode, your program is executed. When your PLC is stopped due to

some PLC error, switching to RUN mode will try to reset the error condition. When the

PLC is powered, it is automatically placed in RUN mode.

Switch to STOP mode. You can remotely place the PLC in STOP mode using this button.

When PLC is in STOP mode, no program is executed. Even if you manually STOP the

control, the PLC will be automatically placed in RUN mode when PLC is powered.

5.7. Offline program transfer to the PLC

When your Raspberry Pi does not have a working network connection, you can transfer your

program manually to the PLC.

To do so, you must write your program using the easyLadder studio software, including

comments and parameters. When done, you need to export the project using Export PLC files

option in the File menu. This option will generate four files in your selected directory:

program.bin This file contains your compiled program.

sections.bin This file contains information about section organization and network

comments. This file is optional.

comments.bin This file includes device comments for the program. This file is optional.

settings.bin This file contains PLC configuration parameters.

After that, you must close the easyLadder PLC engine in your Raspberry and copy these files

using your favorite method. The target for the files is the plcdata directory (by default

/opt/raspicer/plcdata). Once done, you can restart the PLC engine and your program will be up

and running.

86

5.8. PLC configuration

In the project view, bellow program sections, you can access several PLC configuration

parameters. These configurations are transferred to the PLC or from the PLC using Write to PLC

or Read from PLC icons. You can transfer only the configuration or together with the program.

It is not required to STOP the PLC to transfer parameter area.

Configuration parameters are divided into three groups: PLC parameters, Raspberry GPIO

definitions, Ethernet modules, I2C I/O expanders and TCP/IP security. You can setup any group

by double clicking the item in the project view.

5.8.1. PLC parameters

This group contain general configuration values for

the PLC.

At the top of the configuration dialog you can find

the PLC identification section. Using the PLC name

field, you can tag your PLC to ease identification in

the network. Also it is possible to protect the

program with a password to prohibit unauthorized

users to download your program with easyLadder

studio.

The PLC engine thread settings lets you optimize the

PLC process. You can set the thread priority for the

engine and specify the CPUs the engine will use (for

multicored Raspberry Pi2 or Pi3). The most important

usage for this CPU assignment is to isolate a single

CPU for the PLC engine only. You can configure your

Linux system to isolate one CPU during boot. When

this is done, the system will not assign processes to

this core, so selecting ONLY this core in the PLC parameter dialog, the PLC engine will boost

performance being the unique process for the CPU. The PLC engine is single threaded, so you

will not obtain more performance by isolating more than one core. For more information about

CPU isolation, refer to section 4.4. Optimizing the PLC engine.

The general parameter section contain the following items:

Min scan time selects the minimum scan time for the PLC program, in milliseconds. When

setting this field a value greater than 0, the PLC engine will try to adjust the cycle time to this

value. For example, if your program cycle without min scan time setting is 2 ms, and you set

this time to 10 ms, the PLC will execute the cycle and then sleep for 8 ms before running a new

scan. This time is approximate, specially when you are not using CPU isolation, due to the Linux

system thread scheduler. Use this parameter to reduce processor load if your program timing

allows it.

87

Watchdog field sets the value for the cycle watchdog function, in 1000 instructions units. This

feature prevents PLC engine hanging due to bugs in your PLC program. When more than

Watchdog x 1000 instructions are executed in a single scan cycle, the PLC program switches to

STOP to indicate that the program has crashed, probably due to an infinite loop or similar.

Backup time is the time between automatic retentive data backups, in seconds. Retentive data

is saved when PLC engine closes, but data might be lost if the Raspberry Pi loses power. For this

reason, you can set a time for doing regular retentive device backups.

STOP program on extension module / I2C device error option selects the desired behavior

when any Ethernet extension module or I2C device is not reachable.

Shutdown PLC when pressed RasPICER button enables the power button feature for the

RasPICER board. A poweroff command is issued when pressing the power button. This option

is only valid when using the RasPICER board.

Shutdown PLC on power down after a configured time, in milliseconds, causes the PLC engine

to issue a poweroff command when no power is detected on the RasPICER board during the

time specified. While this time elapses, the Raspberry Pi is powered through the RasPICER

battery. This option is only valid when using the RasPICER board.

5.8.2. Ethernet unit definitions

This configuration group contains information about extension modules connected to the

system. Unit management is done through the extension modules dialog. In this dialog you can

add, delete or edit modules.

The dialog include a list of connected units with configuration data (module type, Ethernet

address and device allocation).

88

When adding a new module, you must specify the

module kind, IP address, Module Id and PLC devices

allocated to the unit. You can also disable the

module for maintenance purposes.

Modules must be properly configured before use on

easyLadder. Configuration requires the UDP server

mode, responding to UDP port 502 (MODBUS).

Additionally you must configure IP parameters (IP

address, Subnet mask and Gateway) according to

your network.

Care must be taken when configuring PLC device

ranges for the module, because devices must not

overlap between modules, RasPICER IOs, GPIO and

I2C definitions. For this reason, a check ranges

button is present in the extension modules dialog.

This button checks all device allocation to prevent

device overlapping.

5.8.3. GPIO definitions

Raspberry Pi provides a number or input and output pins in the GPIO connector. These GPIO

ports can be used to expand your available digital IOs for the easyLadder PLC.

This configuration group lets you configure assigned X or Y devices to GPIO pins. You can view,

add, delete or modify GPIO definitions using the GPIO definition dialog.

When adding a new GPIO, you must select the desired GPIO number. You can get more

information about available GPIOs in section 3.6. RasPICER, GPIO and I2C expanders I/O

allocation. Please note that when using the RasPICER board some GPIOs (SPI related) are not

available. Do not use them.

89

Each GPIO can be configured as an output,

input, input with pullup or input with

pulldown. Care must be taken when

configuring assigned device for the GPIO,

because devices must not overlap between

GPIOs, RasPICER IOs, I2C expanders and

extension units. For this reason, a check ranges

button is present in the GPIO definition dialog.

This button checks all device allocation to

prevent device overlapping.

5.8.4. I2C I/O expanders

Raspberry Pi includes an I2C serial port in the GPIO header. Using this port you can provide

additional low cost inputs and outputs to your system, by simply connecting compatible I2C

port expanders to the Raspberry Pi I2C serial bus.

This configuration group lets you configure assigned X or Y devices to I2C expanders. You can

view, add, delete or modify I2C modules using the I2C I/O expanders dialog.

When adding a new I2C device, you must select your connected device model and the I2C

address. Compatible I2C devices are shown as a drop box when adding an expander in the

easyLadder studio software. Please consult this list before designing your system. I2C device

address is designated without the less significant bit, which indicates the read or write

operation (R/W). Please note that when using the I2C bus, some GPIOs (I2C related) are not

available. Do not use them.

90

Each I2C I/O can be configured as an output, input or input with pullup. For each expander, X

and Y devices are sequentially allocated from first digital input (X) and first digital output (Y)

fields.

For your convenience, you can view assigned devices for each I/O in the I/O caption.

Care must be taken when configuring assigned devices for the I2C expander, because devices

must not overlap between GPIOs, RasPICER IOs and extension units. For this reason, a check

ranges button is present in the I2C definition dialog. This button checks all device allocation to

prevent device overlapping.

5.8.5. TCP/IP security

Starting from version 1.7, you can restrict

remote connections to the PLC (HMI protocol,

easyLadder Studio and MODBUS TCP/IP server)

to only a number of allowed IP ranges.

With this feature, you can protect the PLC

engine from unwanted remote accesses.

Using this configuration option, you can set

rules for remote accesses to the PLC.

The checkbox provided lets you to enable the

access rules to the PLC. When unchecked, all

accesses are allowed. When checked, remote

access will be valid only when remote IP

address is included in the list.

91

Addresses are entered using the CIDR notation (X.X.X.X/N), so it is possible to specify an address

with a network mask. For example, when setting an address of 192.168.1.0/24, addresses in

the range 192.168.1.1 to 192.168.1.254 are allowed to access the engine. When setting

192.168.1.45/32, only access from 192.168.1.45 is allowed. Please note that 127.0.0.1

(localhost) access is always permitted.

When access to the PLC engine is lost, due to an error in this setting or other problems, you can

disable access rules by running the RasPICER utility in the Raspberry Pi with a special

parameter: raspicer --unblocktcpip. This way you will gain access to the PLC without losing

configurations.

6. HMI AND EASYLADDER PLC

When building the easyLadder PLC system, you probably will need some kind of Human

Machine Interface (HMI) to monitor PLC status, operate manual PLC commands, configure

working parameters or manage process data (logging, graphs and so on). For this purpose, you

can use any available industrial HMI providing a MODBUS TCP driver. Nevertheless, when

creating cost-sensitive applications or having special HMI requirements, the best solution is to

develop your own HMI application using a powerful language like C++, executed on the same

Raspberry Pi. Doing so, you get an embedded HMI/PLC system with unlimited possibilities.

When creating your HMI application, you can use the general Programming library (section 7.

Programming library) or use our ready to use easyLadderHMI library.

easyLadderHMI is a free library used to build your own HMI application to interface with the

easyLadder PLC. Using this library you can easily develop the HMI interface for your PLC

program using the power of the Qt platform and C++ language, without worrying about

knowledge of easyLadder PLC communication internals. A complete sample is provided with

the library.

The sample provided is designed for the official Raspberry Pi 7” touch screen, but can be easily

translated to other LCD. In this case, it connects to the local easyLadder engine (127.0.0.1), but

it can also connect to a remote PLC simply changing this IP in the source code.

Using the Qt platform, this library can be compiled in any Linux platform, or even in Windows

machines with small modifications. So it is possible to get your HMI working remotely in any

desktop PC, for example.

For more information and library download, refer to http://www.ferrariehijos.com/easyLadder.

http://www.ferrariehijos.com/

92

7. PROGRAMMING LIBRARY

The easyLadder software package contains libraries and source code to ease your custom

development project. C and Python languages are supported. This library is shared with the

RasPICER board support library. Nevertheless, the RasPICER board is not needed to interface

with the easyLadder PLC.

With these libraries, you can monitor the easyLadder engine through the PLC daemon using

UNIX domain sockets.

Writing your customized program to interact with the PLC gives an additional power to the PLC

engine. For instance, you can use your program to do advanced calculations, custom logging,

remote messaging, or provide a user interface to your PLC (HMI or Web).

When using C language, you will need to add the raspicer.c and easyladder.c source file to your

project and include raspicer.h and easyladder.h headers. The only requirement is to call

raspicerInit () function before using the library.

When using Python, you will find the source code for the Python module, written in C language.

To build and install this module for the current user follow these instructions:

In order to build and install this module for all users follow these instructions:

To use the raspicer/easyLadder module, simply import raspicer in your Python program.

Refer to http://www.ferrariehijos.com/easyLadder for more details about available functions.

cd /opt/effesoftware/python

python setup.py install --user

cd /opt/effesoftware/python

sudo python setup.py install

http://www.ferrariehijos.com/

93

Copyright © 2016-2017 Ferrari e hijos, s.a. - version 1705.01

ferrari e hijos, s.a.

http://www.ferrariehijos.com/easyLadder

info@ferrariehijos.com

